Strange nonchaotic attractors via torus breakdown

被引:2
作者
Zhu, ZW
Liu, Z
机构
[1] Department of Electronic Engineering, Nanjing Univ. of Sci. and Technology, Nanjing, Jiangsu
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1997年 / 7卷 / 06期
关键词
CIRCUIT;
D O I
10.1142/S021812749700114X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we examine the quasiperiodically driven logistic map and discuss a mechanism for the development of strange nonchaotic attractors. It is shown that the attractors can be created from two-frequency torus breakdown. We find that the torus does not undergo period-doubling cascade as usual as system parameters vary, instead, the torus curve becomes extremely wrinkled, loses its smoothness and finally becomes fractal. However the Lyapunov exponent remains negative during the process. The mechanism can be used to explain the onset of strange nonchaotic behaviors in a class of systems.
引用
收藏
页码:1425 / 1430
页数:6
相关论文
共 16 条
[1]   Mechanisms of ergodic torus destruction and appearance of strange nonchaotic attractors [J].
Anishchenko, VS ;
Vadivasova, TE ;
Sosnovtseva, O .
PHYSICAL REVIEW E, 1996, 53 (05) :4451-4456
[2]   CONFIRMATION OF THE AFRAIMOVICH-SHILNIKOV TORUS-BREAKDOWN THEOREM VIA A TORUS CIRCUIT [J].
ANISHCHENKO, VS ;
SAFONOVA, MA ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (11) :792-800
[3]   QUASIPERIODICALLY FORCED DAMPED PENDULA AND SCHRODINGER-EQUATIONS WITH QUASIPERIODIC POTENTIALS - IMPLICATIONS OF THEIR EQUIVALENCE [J].
BONDESON, A ;
OTT, E ;
ANTONSEN, TM .
PHYSICAL REVIEW LETTERS, 1985, 55 (20) :2103-2106
[4]   ANALYTICAL CONDITIONS FOR STRANGE CHAOTIC AND NONCHAOTIC ATTRACTORS OF THE QUASI-PERIODICALLY FORCED VANDERPOL EQUATION [J].
BRINDLEY, J ;
KAPITANIAK, T ;
ELNASCHIE, MS .
PHYSICA D, 1991, 51 (1-3) :28-38
[5]   EVOLUTION OF ATTRACTORS IN QUASIPERIODICALLY FORCED SYSTEMS - FROM QUASIPERIODIC TO STRANGE NONCHAOTIC TO CHAOTIC [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW A, 1989, 39 (05) :2593-2598
[6]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268
[7]   THE BIRTH OF STRANGE NONCHAOTIC ATTRACTORS [J].
HEAGY, JF ;
HAMMEL, SM .
PHYSICA D, 1994, 70 (1-2) :140-153
[8]   FRACTALIZATION OF TORUS [J].
KANEKO, K .
PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (05) :1112-1115
[9]  
Kaneko K., 1986, COLLAPSE TORI GENESI
[10]   ROUTE TO CHAOS VIA STRANGE NONCHAOTIC ATTRACTORS [J].
KAPITANIAK, T ;
PONCE, E ;
WOJEWODA, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (08) :L383-L387