Solutions to non-autonomous integrodifferential equations with infinite delay

被引:15
作者
Chang, Jung-Chan [1 ]
机构
[1] I Shou Univ, Dept Appl Math, Kaohsiung 84008, Taiwan
关键词
non-autonomous integrodifferential equations; infinite delay; phase space; FUNCTIONAL-DIFFERENTIAL EQUATIONS; HYPERBOLIC-TYPE; EXISTENCE; STABILITY;
D O I
10.1016/j.jmaa.2006.08.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The conclusions of Da Prato and Sinestrari concerning the non-autonomous evolution operator of hyperbolic type for the equation u'(t) = A (t)u(t) + f(t), t is an element of [0,T], u(0) = z are applied to find the uniqueness and existence of solution to u'(t) = A(t)u(t) + integral(t)(0) K(t, theta, u (theta)) d theta + L(t)u(t) + f(t), t is an element of [0, T], u(0) = phi, where A(.) maybe nondensely defined. Moreover, some relative problems are concerned. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 17 条
[1]   Local existence and stability for some partial functional differential equations with infinite delay [J].
Adimy, M ;
Bouzahir, H ;
Ezzinbi, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (03) :323-348
[2]  
CHANG JC, IN PRESS NONLINEAR A
[3]   NONAUTONOMOUS EVOLUTION OPERATORS OF HYPERBOLIC TYPE [J].
DAPRATO, G ;
SINESTRARI, E .
SEMIGROUP FORUM, 1992, 45 (03) :302-321
[4]  
EZZINBI K, 2003, ELECT J DIFFERENTIAL, V116, P1
[5]  
Hale J. K., 1978, Funkcial. Ekvac., V21, P11
[6]  
Hino Y., 1991, LECT NOTES MATH, V1473
[7]   SOME CONSIDERATIONS TO THE FUNDAMENTAL THEORY OF INFINITE DELAY EQUATIONS [J].
KAPPEL, F ;
SCHAPPACHER, W .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 37 (02) :141-183
[8]   LINEAR EVOLUTION EQUATIONS OF HYPERBOLIC-TYPE .2. [J].
KATO, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1973, 25 (04) :648-666
[9]   Solutions to nonautonomous abstract functional equations with infinite delay [J].
Liang, J ;
Xiao, TJ .
TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (01) :163-172
[10]   Solvability of the Cauchy problem for infinite delay equations [J].
Liang, J ;
Xiao, TJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (3-4) :271-297