The Orthogonal Weingarten Formula in Compact Form

被引:8
作者
Banica, Teodor [1 ]
机构
[1] Cergy Pontoise Univ, Dept Math, F-95302 Cergy Pontoise, France
关键词
orthogonal group; Weingarten function; INTEGRATION; ALGEBRAS; UNITARY;
D O I
10.1007/s11005-009-0363-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a compact formulation of the orthogonal Weingarten formula, with the traditional quantity I (i(1),..., i(2k) : j(1),..., j(2k)) = integral(On) ui(1)j(1)...u(i2kj2k) du replaced by the more advanced quantity I (a) = integral(On) Pi(aij)(uij) du, depending on a matrix of exponents a is an element of M(n)(N). Among consequences, we establish a number of basic facts regarding the integrals I (a): vanishing conditions, possible poles, asymptotic behavior.
引用
收藏
页码:105 / 118
页数:14
相关论文
共 13 条
[1]  
BANICA T, ARXIV09012923
[2]  
BANICA T, GRAM DETERMINA UNPUB
[3]  
BANICA T, ARXIV09101258
[4]   Integration over compact quantum groups [J].
Banica, Teodor ;
Collins, Benoit .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2007, 43 (02) :277-302
[5]   On algebras which are connected with the semisimple continuous groups [J].
Brauer, R .
ANNALS OF MATHEMATICS, 1937, 38 :857-872
[6]   Integration with respect to the Haar measure on unitary, orthogonal and symplectic group [J].
Collins, B ;
Sniady, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (03) :773-795
[7]  
Collins B, 2003, INT MATH RES NOTICES, V2003, P953
[8]  
COLLINS B, 2009, J MATH PHYS IN PRESS
[9]   Quantum Exchangeable Sequences of Algebras [J].
Curran, Stephen .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) :1097-1125
[10]   Meander determinants [J].
Di Francesco, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (03) :543-583