Ethanol as an electrolyte additive for alkaline zinc-air flow batteries

被引:86
|
作者
Hosseini, Soraya [1 ]
Han, Siow Jing [1 ,3 ]
Arponwichanop, Amornchai [1 ,2 ]
Yonezawa, Tetsu [4 ]
Kheawhom, Soorathep [1 ]
机构
[1] Chulalongkorn Univ, Dept Chem Engn, Fac Engn, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Res Unit Computat Proc Engn, Bangkok 10330, Thailand
[3] Univ Teknol PETRONAS, Dept Chem Engn, Fac Engn, Seri Iskander 32610, Perak, Malaysia
[4] Hokkaido Univ, Div Mat Sci & Engn, Fac Engn, Kita 13 Nishi 8, Sapporo, Hokkaido 0608628, Japan
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
HYDROGEN EVOLUTION; ANODIC-DISSOLUTION; PASSIVATION; DISCHARGE; CORROSION; OXIDE; HYDROXIDE; PROGRESS; SURFACE; MODEL;
D O I
10.1038/s41598-018-29630-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Zinc-air flow batteries exhibit high energy density and offer several appealing advantages. However, their low efficiency of zinc utilization resulted from passivation and corrosion of the zinc anodes has limited their broad application. In this work, ethanol, which is considered as an environmentally friendly solvent, is examined as an electrolyte additive to potassium hydroxide (KOH) aqueous electrolyte to improve electrochemical performance of the batteries. Besides, the effects of adding different percentages of ethanol (0-50% v/v) to 8 M KOH aqueous electrolyte were investigated and discussed. Cyclic voltammograms revealed that the presence of 5-10% v/v ethanol is attributed to the enhancement of zinc dissolution and the hindrance of zinc anode passivation. Also, potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that adding 5-10% v/v ethanol could effectively suppress the formation of passivating layers on the active surface of the zinc anodes. Though the addition of ethanol increased solution resistance and hence slightly decreased the discharge potential of the batteries, a significant enhancement of discharge capacity and energy density could be sought. Also, galvanostatic discharge results indicated that the battery using 10% v/v ethanol electrolyte exhibited the highest electrochemical performance with 30% increase in discharge capacity and 16% increase in specific energy over that of KOH electrolyte without ethanol.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Influence of Dimethyl Sulfoxide as Electrolyte Additive on Anodic Dissolution of Alkaline Zinc-Air Flow Battery
    Hosseini, Soraya
    Abbasi, Ali
    Uginet, Luc-Olivier
    Haustraete, Nicolas
    Praserthdam, Supareak
    Yonezawa, Tetsu
    Kheawhom, Soorathep
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [2] Enhanced Cycling Performance of Rechargeable Zinc-Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive
    Khezri, Ramin
    Hosseini, Soraya
    Lahiri, Abhishek
    Motlagh, Shiva Rezaei
    Nguyen, Mai Thanh
    Yonezawa, Tetsu
    Kheawhom, Soorathep
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (19) : 1 - 16
  • [3] Water-suspended graphene as electrolyte additive in zinc-air alkaline battery system
    K. Kishore Kumar
    R. Brindha
    M. Nandhini
    M. Selvam
    K. Saminathan
    K. Sakthipandi
    Ionics, 2019, 25 : 1699 - 1706
  • [4] Water-suspended graphene as electrolyte additive in zinc-air alkaline battery system
    Kumar, K. Kishore
    Brindha, R.
    Nandhini, M.
    Selvam, M.
    Saminathan, K.
    Sakthipandi, K.
    IONICS, 2019, 25 (04) : 1699 - 1706
  • [5] Strategy of Electrolyte Design: Triethanolamine as a Polydentate Ligand to Improve Solvation of Zinc in Zinc-Air Batteries
    Wang, Chenghua
    Huang, Huiyu
    Sun, Xueyan
    Deng, Xiaobin
    Lei, Yuan
    Hao, Wenbing
    Liu, Yilun
    Chen, Xi
    Zhao, Wei
    ACS OMEGA, 2023, : 8092 - 8100
  • [6] Gel Electrolyte with the Sodium Dodecyl Sulfate Additive for Low-Temperature Zinc-Air Batteries
    Zhang, Weiqi
    Han, Xiaopeng
    Hu, Wenbin
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (32) : 38403 - 38411
  • [7] Effects of BTA and TBAB electrolyte additives on the properties of zinc electrodes in zinc-air batteries
    Wang, Pengpeng
    Zhao, Fangxia
    Chang, Hong
    Sun, Quan
    Zhang, Zhenzhong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (20) : 17953 - 17966
  • [8] Compositional Effects of Gel Polymer Electrolyte and Battery Design for Zinc-Air Batteries
    Tran, Thuy Nguyen Thanh
    Aasen, Drew
    Zhalmuratova, Dinara
    Labbe, Matthew
    Chung, Hyun-Joong
    Ivey, Douglas G.
    BATTERIES & SUPERCAPS, 2020, 3 (09) : 917 - 927
  • [9] Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview
    Mainar, Aroa R.
    Leonet, Olatz
    Bengoechea, Miguel
    Boyano, Iker
    de Meatza, Iratxe
    Kvasha, Andriy
    Guerfi, Abdelbast
    Alberto Blazquez, J.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (08) : 1032 - 1049
  • [10] Towards rechargeable zinc-air batteries with aqueous chloride electrolytes
    Clark, Simon
    Mainar, Aroa R.
    Iruin, Elena
    Colmenares, Luis C.
    Blazquez, J. Alberto
    Tolchard, Julian R.
    Latz, Arnulf
    Horstmann, Birger
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) : 11387 - 11399