A nonlinear Gauss-Seidel algorithm for inference about GLMM

被引:10
作者
Jiang, JM [1 ]
机构
[1] Case Western Reserve Univ, Dept Stat, Cleveland, OH 44106 USA
关键词
maximum posterior; generalized linear mixed models; recursive algorithm; convergence;
D O I
10.1007/s001800000030
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A nonlinear Gauss-Seidel type algorithm is proposed for computing the maximum posterior estimates of the random effects in a generalized linear mixed model. We show that the algorithm converges in virtually all typical situations of generalized linear mixed models. A numerical example shows the superiority of the proposed algorithm over the standard Newton-Raphson procedure when the number of random effects is large.
引用
收藏
页码:229 / 241
页数:13
相关论文
共 11 条
[1]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[2]  
HENDERSON CR, 1950, ANN MATH STAT, V21, P309
[3]   Consistent estimators in generalized linear mixed models [J].
Jiang, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) :720-729
[4]  
JIANG J, 1997, STAT SINICA
[5]   A derivation of BLUP - Best linear unbiased predictor [J].
Jiang, JM .
STATISTICS & PROBABILITY LETTERS, 1997, 32 (03) :321-324
[6]  
Lee Y, 1996, J ROY STAT SOC B MET, V58, P619
[7]  
Luenberger D.G., 1984, LINEAR NONLINEAR PRO
[8]   Small area inference for binary variables in the National Health Interview Survey [J].
Malec, D ;
Sedransk, J ;
Moriarity, CL ;
LeClere, FB .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) :815-826
[9]  
McCullagh P., 2019, Generalized Linear Models
[10]  
Robinson G. K., 1991, STAT SCI, V6, P15, DOI 10.1214/ss/1177011926