Electrical DNA Sequence Mapping Using Oligodeoxynucleotide Labels and Nanopores

被引:28
作者
Chen, Kaikai [1 ]
Gularek, Felix [2 ]
Liu, Boyao [1 ]
Weinhold, Elmar [2 ]
Keyser, Ulrich F. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] Rhein Westfal TH Aachen, Inst Organ Chem, D-52056 Aachen, Germany
关键词
single-molecule; nanopore sensing; DNA methyltransferase; DNA detection; AdoMet analogue;
D O I
10.1021/acsnano.0c07947
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Identifying DNA species is crucial for diagnostics. For DNA identification, single-molecule DNA sequence mapping is an alternative to DNA sequencing toward fast point-of-care testing, which traditionally relies on targeting and labeling DNA sequences with fluorescent labels and readout using optical imaging methods. A nanopore is a promising sensor as a complement to optical mapping with advantages of electric measurement suitable for portable devices and potential for high resolution. Here, we demonstrate a high-resolution nanoporebased DNA sequence mapping by labeling specific short sequence motifs with oligodeoxynucleotides (ODNs) using DNA methyltransferase (MTase) and detecting them using nanopores. We successfully detected ODNs down to the size of 11 nucleotides without introducing extra reporters and resolved neighboring sites with a distance of 141 bp (similar to 48 nm) on a single DNA molecule. To accurately locate the sequence motif positions on DNA, a nanopore data analysis method is proposed by considering DNA velocity change through nanopores and using ensemble statistics to translate the time-dependent signals to the location information. Our platform enables high-resolution detection of small labels on DNA and high-accuracy localization of them for DNA species identification in an all-electrical format. The method presents an alternative to optical techniques relying on fluorescent labels and is promising for miniature-scale integration for diagnostic applications.
引用
收藏
页码:2679 / 2685
页数:7
相关论文
共 38 条
[1]  
Bell N. A., ARXIV160704612
[2]   Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore [J].
Bell, Nicholas A. W. ;
Chen, Kaikai ;
Ghosal, Sandip ;
Ricci, Maria ;
Keyser, Ulrich F. .
NATURE COMMUNICATIONS, 2017, 8
[3]   Specific Protein Detection Using Designed DNA Carriers and Nanopores [J].
Bell, Nicholas A. W. ;
Keyser, Ulrich F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (05) :2035-2041
[4]   Single Molecule Localization and Discrimination of DNA-Protein Complexes by Controlled Translocation Through Nanocapillaries [J].
Bulushev, Roman D. ;
Marion, Sanjin ;
Petrova, Ekaterina ;
Davis, Sebastian J. ;
Maerkl, Sebastian J. ;
Radenovic, Aleksandra .
NANO LETTERS, 2016, 16 (12) :7882-7890
[5]   Relevance of the Drag Force during Controlled Trans location of a DNA-Protein Complex through a Glass Nanocapillary [J].
Bulushev, Roman D. ;
Marion, Sanjin ;
Radenovic, Aleksandra .
NANO LETTERS, 2015, 15 (10) :7118-7125
[6]   DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags [J].
Chan, EY ;
Goncalves, NM ;
Haeusler, RA ;
Hatch, AJ ;
Larson, JW ;
Maletta, AM ;
Yantz, GR ;
Carstea, ED ;
Fuchs, M ;
Wong, GG ;
Gullans, SR ;
Gilmanshin, R .
GENOME RESEARCH, 2004, 14 (06) :1137-1146
[7]   Macromolecular Crowding Enhances the Detection of DNA and Proteins by a Solid-State Nanopore [J].
Chau, Chalmers C. ;
Radford, Sheena E. ;
Hewitt, Eric W. ;
Actis, Paolo .
NANO LETTERS, 2020, 20 (07) :5553-5561
[8]   Digital Data Storage Using DNA Nanostructures and Solid-State Nanopores [J].
Chen, Kaikai ;
Kong, Jinglin ;
Zhu, Jinbo ;
Ermann, Niklas ;
Predki, Paul ;
Keyser, Ulrich F. .
NANO LETTERS, 2019, 19 (02) :1210-1215
[9]   Ionic Current-Based Mapping of Short Sequence Motifs in Single DNA Molecules Using Solid-State Nanopores [J].
Chen, Kaikai ;
Juhasz, Matyas ;
Gularek, Felix ;
Weinhold, Elmar ;
Tian, Yu ;
Keyser, Ulrich F. ;
Bell, Nicholas A. W. .
NANO LETTERS, 2017, 17 (09) :5199-5205
[10]   Single-Stranded DNA Translocation Recordings through Solid-State Nanopores on Glass Chips at 10 MHz Measurement Bandwidth [J].
Chien, Chen-Chi ;
Shekar, Siddharth ;
Niedzwiecki, David J. ;
Shepard, Kenneth L. ;
Drndic, Marija .
ACS NANO, 2019, 13 (09) :10545-10554