Existence of positive periodic solution of an impulsive delay Logistic model

被引:20
作者
Sun, Shulin [1 ]
Chen, Lansun
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Shanxi 041004, Linfen, Peoples R China
[2] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
impulsive delay model; k-set contractions; jump condition; existence; periodic solution;
D O I
10.1016/j.amc.2006.06.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the continuation theory for k-set contractions to study the existence of positive periodic solutions of the impulsive delay Logistic model [GRAPHICS] The sufficient conditions of the existence of positive periodic solution are obtained. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:617 / 623
页数:7
相关论文
共 11 条
[1]  
Bainov D, 1993, IMPULSIVE DIFFERENTI
[2]  
Ballinger G, 1999, DYN CONTIN DISCRET I, V5, P579
[3]  
FANG H, 2001, J MATH ANAL APPL, V259, P8
[4]  
Huo H.F., 2004, APPL ANAL, V83, P1279
[5]  
Lakshmikantham V., 1989, Series In Modern Applied Mathematics, V6
[6]   Boundedness for impulsive delay differential equations and applications to population growth models [J].
Liu, XZ ;
Ballinger, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (7-8) :1041-1062
[7]   Existence theorem for periodic solutions of higher order nonlinear differential equations [J].
Liu, ZD ;
Mao, YP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 216 (02) :481-490
[8]   EXISTENCE THEOREMS FOR HIGHER-ORDER NON-LINEAR PERIODIC BOUNDARY-VALUE-PROBLEMS [J].
PETRYSHYN, WV ;
YU, ZS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (09) :943-969
[9]   Oscillation and stability of linear impulsive delay differential equations [J].
Yan, JR ;
Zhao, AM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) :187-194
[10]  
Yang K., 1993, DELAY DIFFERENTIAL E