Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right

被引:54
作者
Coron, Jean-Michel [1 ]
Lu, Qi [2 ]
机构
[1] Univ Paris 06, UMR 7598, Sorbonne Univ, Lab Jacques Louis Lions, F-75005 Paris, France
[2] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2014年 / 102卷 / 06期
关键词
Korteweg-de Vries equation; Stabilization; Integral transform; DEVRIES EQUATION; SYSTEMS; CONTROLLABILITY; DOMAIN; DECAY; STABILIZABILITY;
D O I
10.1016/j.matpur.2014.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of the rapid exponential stabilization problem for a controlled Korteweg-de Vries equation on a bounded interval with homogeneous Dirichlet boundary conditions and Neumann boundary control at the right endpoint of the interval. For every noncritical length, we build a feedback control law to force the solution of the closed-loop system to decay exponentially to zero with arbitrarily prescribed decay rates, provided that the initial datum is small enough. Our approach relies on the construction of a suitable integral transform and can be applied to many other equations. (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1080 / 1120
页数:41
相关论文
共 31 条
[1]  
[Anonymous], 1995, NONLINEAR ADAPTIVE C
[2]   Backstepping in infinite dimension for a class of parabolic distributed parameter systems [J].
Boskovic, DM ;
Balogh, A ;
Krstic, M .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2003, 16 (01) :44-75
[3]   Boundary control of an unstable heat equation via measurement of domain-averaged temperature [J].
Boskovic, DM ;
Krstic, M ;
Liu, WJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (12) :2022-2028
[4]   CONTROL OF A KORTEWEG-DE VRIES EQUATION: A TUTORIAL [J].
Cerpa, Eduardo .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2014, 4 (01) :45-99
[5]   Rapid Stabilization for a Korteweg-de Vries Equation From the Left Dirichlet Boundary Condition [J].
Cerpa, Eduardo ;
Coron, Jean-Michel .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (07) :1688-1695
[6]   RAPID EXPONENTIAL STABILIZATION FOR A LINEAR KORTEWEG-DE VRIES EQUATION [J].
Cerpa, Eduardo ;
Crepeau, Emmanuelle .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03) :655-668
[7]  
Chu J., ASYMPTOTIC STABILITY
[8]  
Coron J.-M., 2007, MATH SURV MONOGR, V136
[9]  
Coron J.-M., FREDHOLM TRANS UNPUB
[10]   Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems [J].
Coron, Jean-Michel ;
Bastin, Georges ;
d'Andrea-Novel, Brigitte .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (03) :1460-1498