Real-time Apriltag Inertial Fusion Localization for Large Indoor Navigation

被引:2
作者
Chen, Jianwei [1 ]
Gao, Yue [2 ]
Li, Shaoyuan [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Automat, MoE Key Lab Artificial Intelligence, Shanghai, Peoples R China
来源
2020 CHINESE AUTOMATION CONGRESS (CAC 2020) | 2020年
基金
中国国家自然科学基金;
关键词
Apriltag; Indoor Localization; Data Fusion; IEKF; ROBUST;
D O I
10.1109/CAC51589.2020.9326501
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Localization in large indoor environment is a challenging problem due to lighting variation and dynamic objects. In this paper, we propose a method for indoor navigation utilizing motion data and Apriltag. The advantage of Apriltag is its invariance to uncertainty in the environment. However, due to the need to minimize the number of Apriltags installed, motion data are required. Hence, in this work, iterative extended Kalman filter(IEKF) method is utilized to fuse visual information and motion data. Furthermore, area detection algorithm is proposed to speed up Apriltag processing speed. In the experiment section, we compared our methods with OpenVSLAM and ground truth Lidar trajectory. In addition, we compared each frame processing time with and without the Apriltag fast detection algorithm.
引用
收藏
页码:6912 / 6916
页数:5
相关论文
共 19 条
  • [1] Barfoot T.D., 2016, State Estimation for Robotics: A Matrix Lie Group Approach
  • [2] Bloesch M, 2015, IEEE INT C INT ROBOT, P298, DOI 10.1109/IROS.2015.7353389
  • [3] Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age
    Cadena, Cesar
    Carlone, Luca
    Carrillo, Henry
    Latif, Yasir
    Scaramuzza, Davide
    Neira, Jose
    Reid, Ian
    Leonard, John J.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (06) : 1309 - 1332
  • [4] An ICP variant using a point-to-line metric
    Censi, Andrea
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 19 - 25
  • [5] LSD-SLAM: Large-Scale Direct Monocular SLAM
    Engel, Jakob
    Schoeps, Thomas
    Cremers, Daniel
    [J]. COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 834 - 849
  • [6] Forster C, 2014, IEEE INT CONF ROBOT, P15, DOI 10.1109/ICRA.2014.6906584
  • [7] Performance evaluation of iterated extended Kalman filter with variable step-length
    Havlik, Jindrich
    Straka, Ondrej
    [J]. 12TH EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS (ACD 2015), 2015, 659
  • [8] Kaijaluoto R., 2015, PRECISE INDOOR LOCAL
  • [9] Kalman Rudolph Emil, 1960, Transactions of the ASME-Journal of Basic Engineering, V82, P35, DOI DOI 10.1115/1.3662552
  • [10] ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras
    Mur-Artal, Raul
    Tardos, Juan D.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (05) : 1255 - 1262