Clustering-Based Descriptors for Fingerprint Indexing and Fast Retrieval

被引:0
|
作者
He, Shihua [1 ]
Zhang, Chao [1 ]
Hao, Pengwei [1 ]
机构
[1] Peking Univ, Minist Educ, Key Lab Machine Percept, Beijing 100871, Peoples R China
来源
COMPUTER VISION - ACCV 2009, PT I | 2010年 / 5994卷
关键词
fingerprint indexing; fingerprint retrieval; local descriptors; clustering; FEATURES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of fast fingerprint retrieval in a large database using clustering-based descriptors. Most current fingerprint indexing frameworks utilize global textures and minutiae structures. To extend the existing methods for feature extraction, previous work focusing on SIFT features has yielded high performance. In our work, other local descriptors such as SURF and DAISY are studied and a comparison of performance is made. A clustering method is used to partition the descriptors into groups to speed up retrieval. PCA is used to reduce the dimensionality of the cluster prototypes before selecting the closest prototype to an input descriptor. In the index instruction phase, the locality-sensitive hashing (LSH) is implemented for each descriptor cluster to efficiently retrieve similarity queries in a small fraction of the cluster. Experiments on public fingerprint databases show that the performance suffers little while the speed of retrieval is improved much using clustering-based SURF descriptors.
引用
收藏
页码:354 / 363
页数:10
相关论文
共 50 条
  • [1] CD-Tree: A clustering-based dynamic indexing and retrieval approach
    Wan, Yuchai
    Liu, Xiabi
    Wu, Yi
    INTELLIGENT DATA ANALYSIS, 2017, 21 (02) : 243 - 261
  • [2] Aspect term extraction and optimized deep fuzzy clustering-based inverted indexing for document retrieval
    Chandwani, Gunjan
    Ahlawat, Anil
    Dubey, Gaurav
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2022, 16 (03): : 543 - 555
  • [3] Learning Binary Descriptors for Fingerprint Indexing
    Bai, Chaochao
    Li, Mingqiang
    Zhao, Tong
    Wang, Weiqiang
    IEEE ACCESS, 2018, 6 : 1583 - 1594
  • [4] An Indexing Algorithm Based on Clustering of Minutia Cylinder Codes for Fast Latent Fingerprint Identification
    Perez-Sanchez, Ismay
    Cervantes, Barbara
    Angel Medina-Perez, Miguel
    Monroy, Raul
    Loyola-Gonzalez, Octavio
    Garcia, Salvador
    Herrera, Francisco
    IEEE ACCESS, 2021, 9 : 85488 - 85499
  • [5] A CLUSTERING-BASED APPROACH FOR EVALUATION OF EO IMAGE INDEXING
    Bahmanyar, Reza
    Rigoll, Gerhard
    Datcu, Mihai
    SMPR CONFERENCE 2013, 2013, 40-1-W3 : 79 - 84
  • [6] Robust Clustering-based Segmentation Methods for Fingerprint Recognition
    Ferreira, Pedro M.
    Sequeira, Ana F.
    Cardoso, Jaime S.
    Rebelo, Ana
    2018 INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG), 2018,
  • [7] Clustering-based Automated Requirement Trace Retrieval
    Al-walidi, Nejood Hashim
    Azab, Shahira Shaaban
    Khamis, Abdelaziz
    Darwish, Nagy Ramadan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (12) : 783 - 792
  • [8] Clustering based Fingerprint Indexing using Triangle Spiral
    Jain, Ashima
    Prasad, Munaga V. N. K.
    2015 11TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2015, : 81 - 88
  • [9] Clustering-based fusion for medical information retrieval
    Xu, Qiuyu
    Huang, Yidong
    Wu, Shengli
    Nugent, Chris
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 135
  • [10] A clustering-based adaptive Neighborhood Retrieval Visualizer
    Olszewski, Dominik
    NEURAL NETWORKS, 2021, 140 : 247 - 260