Structural and transport properties of lithium-conducting NASICON materials

被引:84
作者
Rossbach, Andreas [1 ,2 ]
Tietz, Frank [1 ,3 ]
Grieshammer, Steffen [1 ,2 ]
机构
[1] Forschungszentrum Julich, Helmholtz Inst Munster IEK 12, Corrensstr 46, D-48149 Munster, Germany
[2] Rhein Westfal TH Aachen, Inst Phys Chem, D-52074 Aachen, Germany
[3] Forschungszentrum Julich, Inst Energy & Climate Res Mat Synth & Proc IEK 1, D-52425 Julich, Germany
关键词
Ionic conductivity; NASICON; Lithium-ion batteries; Solid electrolytes; LI-ION CONDUCTIVITY; SOLID-ELECTROLYTE; ELECTRICAL-PROPERTIES; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURE; PHASE RELATIONSHIP; X-RAY; MOBILITY; TRANSITION; BATTERIES;
D O I
10.1016/j.jpowsour.2018.04.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-containing NASICON-structured materials are a promising class of solid-state Li-ion conductors for application in electrochemical energy storage devices. Amongst the wide variety of possible compositions the highest conductivities are reported for materials according to the formula (Li1+xMxM2-x(IV))-M-(III)(PO4)(3), in which the substitution of tetravalent with trivalent metal cations leads to incorporation of additional lithium ions and a higher mobility of the charge carriers. For this study, we surveyed more than 300 research articles about Li-NASICON materials. The relations between composition, structure and conductivity are evaluated to give a comprehensive overview of published data on synthesized compositions. A special focus is laid on Li1+xAlxTi2-x (PO4)(3) as the single most conductive and investigated material. The collected conductivities show a wide scattering in a range of 10(-10) S cm(-1) up to 10(-3) S cm(-1). The highest values are obtained for materials with M(III) to M(IV) cation ratios of x = 0.3-0.4. Further characteristics for high conductivity are evaluated and the rhombohedral structure as well as cation sizes of around 50-60 p.m. are identified as crucial prerequisites, favoring titanium-based compositions. Considering the evaluated data, selected compositions are suggested for further investigation to support future research.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 117 条
[1]   Structural and lithium intercalation studies of Mn(0.5-x)CaxTi2(PO4)3 phases (0≤x≤0.50) [J].
Aatiq, A ;
Ménétrier, M ;
El Jazouli, A ;
Delmas, C .
SOLID STATE IONICS, 2002, 150 (3-4) :391-405
[2]   CRYSTAL STRUCTURE OF TRANSITION-METAL MOLYBDATES AND TUNGSTATES .2. DIAMAGNETIC SC2(WO4)3 [J].
ABRAHAMS, SC ;
BERNSTEIN, JL .
JOURNAL OF CHEMICAL PHYSICS, 1966, 45 (08) :2745-+
[3]   LI+ -ION CONDUCTIVITY OF LI1+XMXTI2-X(PO4)3 (M-SC(3+),Y(3+)) [J].
ADO, K ;
SAITO, Y ;
ASAI, T ;
KAGEYAMA, H ;
NAKAMURA, O .
SOLID STATE IONICS, 1992, 53 :723-727
[4]   THERMAL-EXPANSION OF LIZR2(PO4)3 - WATER INCLUSION INFLUENCE [J].
ALAMO, J ;
RODRIGO, JL .
SOLID STATE IONICS, 1989, 32-3 :70-76
[5]   LITHIUM SCANDIUM PHOSPHATE-BASED ELECTROLYTES FOR SOLID-STATE LITHIUM RECHARGEABLE MICROBATTERIES [J].
AMATUCCI, GG ;
SAFARI, A ;
SHOKOOHI, FK ;
WILKENS, BJ .
SOLID STATE IONICS, 1993, 60 (04) :357-365
[6]   A wide-ranging review on Nasicon type materials [J].
Anantharamulu, N. ;
Rao, K. Koteswara ;
Rambabu, G. ;
Kumar, B. Vijaya ;
Radha, Velchuri ;
Vithal, M. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (09) :2821-2837
[7]   IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, GY .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) :590-591
[8]   ELECTRICAL-PROPERTIES AND CRYSTAL-STRUCTURE OF SOLID-ELECTROLYTE BASED ON LITHIUM HAFNIUM PHOSPHATE LIHF2(PO4)3 [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, GY .
SOLID STATE IONICS, 1993, 62 (3-4) :309-316
[9]   DC CONDUCTIVITY OF LI1.3AL0.3TI1.7(PO4)3 CERAMIC WITH LI ELECTRODES [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
CHEMISTRY LETTERS, 1991, (09) :1567-1570
[10]   THE ELECTRICAL-PROPERTIES OF CERAMIC ELECTROLYTES FOR LIMXTI2-X(PO4)3+YLI2O, M = GE, SN, HF, AND ZR SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (07) :1827-1833