Energy diffusion in hard-point systems

被引:40
作者
Delfini, L.
Denisov, S.
Lepri, S.
Livi, R.
Mohanty, P. K.
Politi, A.
机构
[1] CNR, Ist Sistemi Complessi, I-50019 Sesto Fiorentino, Italy
[2] Univ Augsburg, Dept Phys, D-86135 Augsburg, Germany
[3] Dipartimento Fis, I-50019 Sesto Fiorentino, Italy
[4] Saha Inst Nucl Phys, Kolkata, India
[5] Ist Nazl Fis Nucl, I-50125 Florence, Italy
[6] Ist Nazl Fis Mat, Florence, Italy
关键词
THERMAL-CONDUCTIVITY; HEAT-CONDUCTION; TRANSPORT; DYNAMICS; BEHAVIOR;
D O I
10.1140/epjst/e2007-00166-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the diffusive properties of energy fluctuations in a one- dimensional diatomic chain of hard- point particles interacting through a square- well potential. The evolution of initially localized infinitesimal and finite perturbations is numerically investigated for different density values. All cases belong to the same universality class which can be also interpreted as a Levy walk of the energy with scaling exponent gamma= 3/5. The zero- pressure limit is nevertheless exceptional in that normal diffusion is found in tangent space and yet anomalous diffusion with a different rate for perturbations of finite amplitude. The different behaviour of the two classes of perturbations is traced back to the " stable chaos" type of dynamics exhibited by this model. Finally, the effect of an additional internal degree of freedom is investigated, finding that it does not modify the overall scenario.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 35 条
[1]   COLLECTIVE MODES OF ONE-DIMENSIONAL LENNARD-JONES SYSTEMS [J].
BISHOP, M .
JOURNAL OF STATISTICAL PHYSICS, 1982, 29 (03) :623-629
[2]   TRANSPORT ASPECTS IN ANOMALOUS DIFFUSION - LEVY WALKS [J].
BLUMEN, A ;
ZUMOFEN, G ;
KLAFTER, J .
PHYSICAL REVIEW A, 1989, 40 (07) :3964-3974
[3]   Chaotic-like behaviour in chains of stable nonlinear oscillators [J].
Bonaccini, R ;
Politi, A .
PHYSICA D, 1997, 103 (1-4) :362-368
[4]   Anomalous heat conduction in a one-dimensional ideal gas [J].
Casati, G ;
Prosen, T .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[5]   ENERGY-TRANSPORT AND THE FOURIER HEAT LAW IN CLASSICAL-SYSTEMS [J].
CASATI, G .
FOUNDATIONS OF PHYSICS, 1986, 16 (01) :51-61
[6]   From anomalous energy diffusion to levy walks and heat conductivity in one-dimensional systems [J].
Cipriani, P ;
Denisov, S ;
Politi, A .
PHYSICAL REVIEW LETTERS, 2005, 94 (24)
[7]  
DELFINI L, CONDMAT 0611278
[8]   Self-consistent mode-coupling approach to one-dimensional heat transport [J].
Delfini, Luca ;
Lepri, Stefano ;
Livi, Roberto ;
Politi, Antonio .
PHYSICAL REVIEW E, 2006, 73 (06)
[9]   Dynamical heat channels [J].
Denisov, S ;
Klafter, J ;
Urbakh, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (19)
[10]   One-dimensional heat conductivity exponent from a random collision model [J].
Deutsch, JM ;
Narayan, O .
PHYSICAL REVIEW E, 2003, 68 (01) :3-102013