ERO2.0 modelling of nanoscale surface morphology evolution

被引:8
作者
Alberti, G. [1 ]
Sala, M. [1 ]
Romazanov, J. [2 ]
Uccello, A. [3 ]
Dellasega, D. [1 ]
Passoni, M. [1 ,3 ]
机构
[1] Politecn Milan, Dept Energy, I-20133 Milan, Italy
[2] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, Trilateral Euregio Cluster TEC, Julich, Germany
[3] CNR, Ist Sci & Tecnol Plasmi, I-20125 Milan, Italy
关键词
ERO2; 0; morphology evolution; GyM; erosion; nanostructured tungsten; plasma facing components; linear plasma device; SELF-DIFFUSION; ANALYTICAL EXPRESSION; ELECTRIC-FIELD; PLASMA; EROSION; CRYSTAL; DEPOSITION; TUNGSTEN;
D O I
10.1088/1741-4326/abfcde
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Plasma-material interaction (PMI) in tokamaks determines the life-time of first-wall (FW) components. Due to PMI, FW materials are eroded and transported within the device. Erosion is strongly influenced by the original morphology of the component, due to particle redeposition on near surface structures and to the changing of impact angle distributions, which results in an alteration of the sputtering effects. The Monte-Carlo impurity transport code ERO2.0 is capable of modelling the erosion of non-trivial surface morphologies due to plasma irradiation. The surface morphology module was validated against experimental data with satisfactory agreement. In this work, we further progress in the validation of the ERO2.0 capabilities by modelling both numerically generated surfaces as well as real surfaces, generated using atomic force microscopy (AFM) measurements of reference tungsten samples. The former are used to validate ERO2.0 against one of the morphology evolution models present in literature, in order to outline the conditions for reliable code solutions. Modifications induced in AFM-generated surfaces after argon and helium plasma irradiation are compared, showing a similar post-exposure morphology, mostly dominated by surface smoothing. Finally, the ERO2.0 morphology retrieved after He plasma exposure is compared to experimentally-available scanning electron microscopy and AFM measurements of the same surface morphology exposed in the linear plasma device GyM, showing the need for further improvements of the code, while a good agreement between experimental and simulated erosion rate is observed.
引用
收藏
页数:15
相关论文
共 45 条
[1]   INTERFACIAL FREE-ENERGIES OF SOLID CHROMIUM, MOLYBDENUM AND TUNGSTEN [J].
ALLEN, BC .
JOURNAL OF THE LESS-COMMON METALS, 1972, 29 (03) :263-+
[2]   Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J].
Baldwin, M. J. ;
Doerner, R. P. .
NUCLEAR FUSION, 2008, 48 (03)
[3]   Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials [J].
Besozzi, E. ;
Maffini, A. ;
Dellasega, D. ;
Russo, V. ;
Facibeni, A. ;
Pazzaglia, A. ;
Beghi, M. G. ;
Passoni, M. .
NUCLEAR FUSION, 2018, 58 (03)
[4]   SURFACE SELF DIFFUSION MEASUREMENTS ON NICKEL BY THE MASS TRANSFER METHOD [J].
BLAKELY, JM ;
MYKURA, H .
ACTA METALLURGICA, 1961, 9 (01) :23-31
[5]   An analytical expression for ion velocities at the wall including the sheath electric field and surface biasing for erosion modeling at JET ILW [J].
Borodkina, I. ;
Borodin, D. ;
Brezinsek, S. ;
Kirschner, A. ;
Tsvetkov, I. V. ;
Kurnaev, V. A. ;
Bobkov, V. ;
Klepper, C. C. ;
Lasa, A. ;
Guillemaut, C. ;
Jacquet, P. ;
Stamp, M. F. ;
Giroud, C. ;
Silburn, S. ;
Balboa, I. ;
Solano, E. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :341-345
[6]   An Analytical Expression for the Electric Field and Particle Tracing in Modelling of Be Erosion Experiments at the JET ITER-like Wall [J].
Borodkina, I. ;
Borodin, D. ;
Kirschner, A. ;
Tsvetkov, I. V. ;
Kurnaev, V. A. ;
Komm, M. ;
Dejarnac, R. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. ;
Austin, Y. ;
Avotina, L. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2016, 56 (6-8) :640-645
[7]   THEORY OF RIPPLE TOPOGRAPHY INDUCED BY ION-BOMBARDMENT [J].
BRADLEY, RM ;
HARPER, JME .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (04) :2390-2395
[8]   Erosion, screening, and migration of tungsten in the JET divertor [J].
Brezinsek, S. ;
Kirschner, A. ;
Mayer, M. ;
Baron-Wiechec, A. ;
Borodkina, I ;
Borodin, D. ;
Coffey, I ;
Coenen, J. ;
den Harder, N. ;
Eksaeva, A. ;
Guillemaut, C. ;
Heinola, K. ;
Huber, A. ;
Huber, V ;
Imrisek, M. ;
Jachmich, S. ;
Pawelec, E. ;
Rubel, M. ;
Krat, S. ;
Sergienko, G. ;
Matthews, G. F. ;
Meigs, A. G. ;
Wiesen, S. ;
Widdowson, A. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. .
NUCLEAR FUSION, 2019, 59 (09)
[9]   DYNAMIC SCALING OF ION-SPUTTERED SURFACES [J].
CUERNO, R ;
BARABASI, AL .
PHYSICAL REVIEW LETTERS, 1995, 74 (23) :4746-4749
[10]   Nanostructured and amorphous-like tungsten films grown by pulsed laser deposition [J].
Dellasega, D. ;
Merlo, G. ;
Conti, C. ;
Bottani, C. E. ;
Passoni, M. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (08)