LOCAL-GLOBAL ASPECTS OF (HYPER)ELLIPTIC CURVES OVER (IN)FINITE FIELDS

被引:0
作者
Silverman, Joseph H. [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
关键词
Elliptic curve; hyperelliptic curve; abelian variety; ELLIPTIC-CURVES; MODULAR-REPRESENTATIONS; CANONICAL HEIGHT; POINTS;
D O I
10.3934/amc.2010.4.101
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We survey the interaction between local and global theory for studying the arithmetic properties of curves, jacobians, and abelian varieties.
引用
收藏
页码:101 / 114
页数:14
相关论文
共 26 条
  • [1] [Anonymous], 1963, J. Reine Angew. Math, DOI DOI 10.1515/CRLL.1963.212.7
  • [2] [Anonymous], IZV AKAD NAUK SSSR M
  • [3] BIRCH BJ, 1965, J REINE ANGEW MATH, V218, P79
  • [4] On the modularity of elliptic curves over Q: Wild 3-adic exercises
    Breuil, C
    Conrad, B
    Diamond, F
    Taylor, R
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) : 843 - 939
  • [5] CONJECTURE OF BIRCH AND SWINNERTON-DYER
    COATES, J
    WILES, A
    [J]. INVENTIONES MATHEMATICAE, 1977, 39 (03) : 223 - 251
  • [6] Deligne P., 1974, PUBL MATH I HAUTES E, V43, P273
  • [7] ELKIES N, 2006, Z28 E Q NUMBER THEOR
  • [8] HEEGNER POINTS AND DERIVATIVES OF L-SERIES
    GROSS, BH
    ZAGIER, DB
    [J]. INVENTIONES MATHEMATICAE, 1986, 84 (02) : 225 - 320
  • [9] THE CANONICAL HEIGHT AND INTEGRAL POINTS ON ELLIPTIC-CURVES
    HINDRY, M
    SILVERMAN, JH
    [J]. INVENTIONES MATHEMATICAE, 1988, 93 (02) : 419 - 450
  • [10] Hindry M, 2000, GRADUATE TEXTS MATH