LOCAL-GLOBAL ASPECTS OF (HYPER)ELLIPTIC CURVES OVER (IN)FINITE FIELDS

被引:0
作者
Silverman, Joseph H. [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
关键词
Elliptic curve; hyperelliptic curve; abelian variety; ELLIPTIC-CURVES; MODULAR-REPRESENTATIONS; CANONICAL HEIGHT; POINTS;
D O I
10.3934/amc.2010.4.101
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We survey the interaction between local and global theory for studying the arithmetic properties of curves, jacobians, and abelian varieties.
引用
收藏
页码:101 / 114
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 1963, J. Reine Angew. Math, DOI DOI 10.1515/CRLL.1963.212.7
[2]  
[Anonymous], IZV AKAD NAUK SSSR M
[3]  
BIRCH BJ, 1965, J REINE ANGEW MATH, V218, P79
[4]   On the modularity of elliptic curves over Q: Wild 3-adic exercises [J].
Breuil, C ;
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :843-939
[5]   CONJECTURE OF BIRCH AND SWINNERTON-DYER [J].
COATES, J ;
WILES, A .
INVENTIONES MATHEMATICAE, 1977, 39 (03) :223-251
[6]  
Deligne P., 1974, PUBL MATH I HAUTES E, V43, P273
[7]  
ELKIES N, 2006, Z28 E Q NUMBER THEOR
[8]   HEEGNER POINTS AND DERIVATIVES OF L-SERIES [J].
GROSS, BH ;
ZAGIER, DB .
INVENTIONES MATHEMATICAE, 1986, 84 (02) :225-320
[9]   THE CANONICAL HEIGHT AND INTEGRAL POINTS ON ELLIPTIC-CURVES [J].
HINDRY, M ;
SILVERMAN, JH .
INVENTIONES MATHEMATICAE, 1988, 93 (02) :419-450
[10]  
Hindry M, 2000, GRADUATE TEXTS MATH