Detection of microcalcifications and tumor tissue in mammography using a CdTe-series photon-counting detector

被引:0
作者
Nakajima, Ai [1 ]
Ihori, Akiko [1 ]
Nishide, Hiroko [1 ,2 ]
Koyama, Shuji [1 ]
Yamakawa, Tsutomu [3 ]
Yamamoto, Shuichiro [3 ]
Okada, Masahiro [3 ]
Kodera, Yoshie [1 ]
机构
[1] Nagoya Univ, Grad Sch Med, Dept Radiol Sci, Higashi Ku, 1-1-20 Daiko Minami, Nagoya, Aichi 4618673, Japan
[2] Gifu Univ Med Sci, Sch Hlth Sci, Dept Radiol Technol, 795-1 Nagamine, Seki, Gifu 5013892, Japan
[3] JOB Corp, Kouhoku Ku, 1-19-8 Shin Yokohama, Yokohama, Kanagawa 2220033, Japan
来源
MEDICAL IMAGING 2017: PHYSICS OF MEDICAL IMAGING | 2017年 / 10132卷
关键词
Mammography; energy resolved photon-counting technology; microcalcification; breast tumor; simulation;
D O I
10.1117/12.2253576
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this study, we proposed a method for detecting microcalcifications and tumor tissue using a cadmium telluride (CdTe) series linear detector. The CdTe series detector was used as an energy resolved photon-counting (hereafter referred to as the photon-counting) mammography detector. The CdTe series linear detector and two types of phantom were designed using a MATLAB simulation. Each phantom consisted of mammary gland and adipose tissue. One phantom contained microcalcifications and the other contained tumor tissue. We varied the size of these structures and the mammary gland composition. We divided the spectrum of an X-ray, which is transmitted to each phantom, into three energy bins and calculated the corresponding linear attenuation coefficients from the numbers of input and output photons. Subsequently, the absorption vector length that expresses the amount of absorption was calculated. When the material composition was different between objects, for example mammary gland and microcalcifications, the absorption vector length was also different. We compared each absorption vector length and tried to detect the microcalcifications and tumor tissue. However, as the size of microcalcifications and tumor tissue decreased and/or the mammary gland content rate increased, there was difficulty in distinguishing them. The microcalcifications and tumor tissue despite the reduction in size or increase in mammary gland content rate can be distinguished by increasing the X-ray dosage. Therefore, it is necessary to find a condition under which a low exposure dose is optimally balanced with high detection sensitivity. It is a new method to indicate the image using photon counting technology.
引用
收藏
页数:8
相关论文
共 9 条
[1]  
Ihori A., 2016, P SOC PHOTO-OPT INS, V9783
[2]   Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging [J].
Iwanczyk, Jan S. ;
Nygard, Einar ;
Meirav, Oded ;
Arenson, Jerry ;
Barber, William C. ;
Hartsough, Neal E. ;
Malakhov, Nail ;
Wessel, Jan C. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (03) :535-542
[3]  
JOHNS PC, 2002, P SOC PHOTO-OPT INS, P367
[4]  
Maidment A. D. A., 2006, P SOC PHOTO-OPT INS, V6142
[5]  
Nakajima A., 2016, P IWDM, V9699, P98
[6]  
Ogawa K, 2004, IEEE NUCL SCI CONF R, P2755
[7]  
Okamoto C., 2016, P SOC PHOTO-OPT INS, V9783
[8]   Photon counting computed tomography: Concept and initial results [J].
Shikhaliev, PM ;
Xu, T ;
Molloi, S .
MEDICAL PHYSICS, 2005, 32 (02) :427-436
[9]   SEMIEMPIRICAL MODEL FOR GENERATING TUNGSTEN TARGET X-RAY-SPECTRA [J].
TUCKER, DM ;
BARNES, GT ;
CHAKRABORTY, DP .
MEDICAL PHYSICS, 1991, 18 (02) :211-218