On Higher Order Voronoi Diagrams of Line Segments

被引:0
作者
Papadopoulou, Evanthia [1 ]
Zavershynskyi, Maksym [1 ]
机构
[1] Univ Svizzera Italiana, Fac Informat, Lugano, Switzerland
来源
ALGORITHMS AND COMPUTATION, ISAAC 2012 | 2012年 / 7676卷
关键词
computational geometry; Voronoi diagrams; line segments; higher order Voronoi diagrams; PLANE; SET;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyze structural properties of the order-k Voronoi diagram of line segments, which surprisingly has not received any attention in the computational geometry literature. We show that order-k Voronoi regions of line segments may be disconnected; in fact a single order-k Voronoi region may consist of Omega(n) disjoint faces. Nevertheless, the structural complexity of the order-k Voronoi diagram of non-intersecting segments remains O(k(n -k)) similarly to points. For intersecting line segments the structural complexity remains O(k(n -k)) for k >= n/2.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
[31]   On the Relations Between SINR Diagrams and Voronoi Diagrams [J].
Parter, Merav ;
Peleg, David .
AD-HOC, MOBILE, AND WIRELESS NETWORKS, 2015, 9143 :225-237
[32]   VORONOI DIAGRAMS OF RIGIDLY MOVING SETS OF POINTS [J].
HUTTENLOCHER, DP ;
KEDEM, K ;
KLEINBERG, JM .
INFORMATION PROCESSING LETTERS, 1992, 43 (04) :217-223
[33]   Divide-and-conquer for Voronoi diagrams revisited [J].
Aichholzer, Oswin ;
Aigner, Wolfgang ;
Aurenhammer, Franz ;
Hackl, Thomas ;
Juettler, Bert ;
Pilgerstorfer, Elisabeth ;
Rabl, Margot .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2010, 43 (08) :688-699
[34]   Divide-and-Conquer for Voronoi Diagrams Revisited [J].
Aichholzer, Oswin ;
Aigner, Wolfgang ;
Aurenhammer, Franz ;
Hackl, Thomas ;
Juettler, Bert ;
Pilgerstorfer, Elisabeth ;
Rabl, Margot .
PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, :189-197
[35]   A randomized algorithm for the Voronoi diagram of line segments on coarse-grained multiprocessors [J].
Deng, XT ;
Zhu, BH .
ALGORITHMICA, 1999, 24 (3-4) :270-286
[36]   Sorting helps for Voronoi diagrams [J].
Chew, LP ;
Fortune, S .
ALGORITHMICA, 1997, 18 (02) :217-228
[37]   Voronoi diagrams of moving points [J].
Albers, G ;
Guibas, LJ ;
Mitchell, JSB ;
Roos, T .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1998, 8 (03) :365-379
[38]   Tropical Bisectors and Voronoi Diagrams [J].
Francisco Criado ;
Michael Joswig ;
Francisco Santos .
Foundations of Computational Mathematics, 2022, 22 :1923-1960
[39]   Voronoi diagrams with overlapping regions [J].
Tammy Drezner ;
Zvi Drezner .
OR Spectrum, 2013, 35 :543-561
[40]   Local calculation of Voronoi diagrams [J].
Kühn, U .
INFORMATION PROCESSING LETTERS, 1998, 68 (06) :307-312