On Higher Order Voronoi Diagrams of Line Segments

被引:0
作者
Papadopoulou, Evanthia [1 ]
Zavershynskyi, Maksym [1 ]
机构
[1] Univ Svizzera Italiana, Fac Informat, Lugano, Switzerland
来源
ALGORITHMS AND COMPUTATION, ISAAC 2012 | 2012年 / 7676卷
关键词
computational geometry; Voronoi diagrams; line segments; higher order Voronoi diagrams; PLANE; SET;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyze structural properties of the order-k Voronoi diagram of line segments, which surprisingly has not received any attention in the computational geometry literature. We show that order-k Voronoi regions of line segments may be disconnected; in fact a single order-k Voronoi region may consist of Omega(n) disjoint faces. Nevertheless, the structural complexity of the order-k Voronoi diagram of non-intersecting segments remains O(k(n -k)) similarly to points. For intersecting line segments the structural complexity remains O(k(n -k)) for k >= n/2.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
[21]   Farthest line segment Voronoi diagrams [J].
Aurenhammer, F. ;
Drysdale, R. L. S. ;
Krasser, H. .
INFORMATION PROCESSING LETTERS, 2006, 100 (06) :220-225
[22]   Abstract Voronoi diagrams revisited [J].
Klein, Rolf ;
Langetepe, Elmar ;
Nilforoushan, Zahra .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (09) :885-902
[23]   ORDER-K VORONOI DIAGRAMS OF SITES WITH ADDITIVE WEIGHTS IN THE PLANE [J].
ROSENBERGER, H .
ALGORITHMICA, 1991, 6 (04) :490-521
[24]   Optimal parallel randomized algorithms for the Voronoi diagram of line segments in the plane [J].
Rajasekaran, S ;
Ramaswami, S .
ALGORITHMICA, 2002, 33 (04) :436-460
[25]   Computing Convex-Straight-Skeleton Voronoi Diagrams for Segments and Convex Polygons [J].
Barequet, Gill ;
De, Minati ;
Goodrich, Michael T. .
COMPUTING AND COMBINATORICS (COCOON 2018), 2018, 10976 :130-142
[26]   Voronoi diagrams with overlapping regions [J].
Drezner, Tammy ;
Drezner, Zvi .
OR SPECTRUM, 2013, 35 (03) :543-561
[27]   Map segmentation for geospatial data mining through generalized higher-order Voronoi diagrams with sequential scan algorithms [J].
Lee, Ickjai ;
Torpelund-Bruin, Christopher ;
Lee, Kyungmi .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (12) :11135-11148
[28]   Abstract Voronoi Diagrams with Disconnected Regions [J].
Bohler, Cecilia ;
Klein, Rolf .
ALGORITHMS AND COMPUTATION, 2013, 8283 :306-316
[29]   Incremental Voronoi Diagrams [J].
Allen, Sarah R. ;
Barba, Luis ;
Iacono, John ;
Langerman, Stefan .
DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (04) :822-848
[30]   Incremental Voronoi Diagrams [J].
Sarah R. Allen ;
Luis Barba ;
John Iacono ;
Stefan Langerman .
Discrete & Computational Geometry, 2017, 58 :822-848