On Higher Order Voronoi Diagrams of Line Segments

被引:0
作者
Papadopoulou, Evanthia [1 ]
Zavershynskyi, Maksym [1 ]
机构
[1] Univ Svizzera Italiana, Fac Informat, Lugano, Switzerland
来源
ALGORITHMS AND COMPUTATION, ISAAC 2012 | 2012年 / 7676卷
关键词
computational geometry; Voronoi diagrams; line segments; higher order Voronoi diagrams; PLANE; SET;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyze structural properties of the order-k Voronoi diagram of line segments, which surprisingly has not received any attention in the computational geometry literature. We show that order-k Voronoi regions of line segments may be disconnected; in fact a single order-k Voronoi region may consist of Omega(n) disjoint faces. Nevertheless, the structural complexity of the order-k Voronoi diagram of non-intersecting segments remains O(k(n -k)) similarly to points. For intersecting line segments the structural complexity remains O(k(n -k)) for k >= n/2.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [21] Abstract Voronoi diagrams revisited
    Klein, Rolf
    Langetepe, Elmar
    Nilforoushan, Zahra
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (09): : 885 - 902
  • [22] Optimal parallel randomized algorithms for the Voronoi diagram of line segments in the plane
    Rajasekaran, S
    Ramaswami, S
    ALGORITHMICA, 2002, 33 (04) : 436 - 460
  • [23] ORDER-K VORONOI DIAGRAMS OF SITES WITH ADDITIVE WEIGHTS IN THE PLANE
    ROSENBERGER, H
    ALGORITHMICA, 1991, 6 (04) : 490 - 521
  • [24] Computing Convex-Straight-Skeleton Voronoi Diagrams for Segments and Convex Polygons
    Barequet, Gill
    De, Minati
    Goodrich, Michael T.
    COMPUTING AND COMBINATORICS (COCOON 2018), 2018, 10976 : 130 - 142
  • [25] Voronoi diagrams with overlapping regions
    Drezner, Tammy
    Drezner, Zvi
    OR SPECTRUM, 2013, 35 (03) : 543 - 561
  • [26] Abstract Voronoi Diagrams with Disconnected Regions
    Bohler, Cecilia
    Klein, Rolf
    ALGORITHMS AND COMPUTATION, 2013, 8283 : 306 - 316
  • [27] Map segmentation for geospatial data mining through generalized higher-order Voronoi diagrams with sequential scan algorithms
    Lee, Ickjai
    Torpelund-Bruin, Christopher
    Lee, Kyungmi
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (12) : 11135 - 11148
  • [28] Voronoi diagrams on the sphere
    Na, HS
    Lee, CN
    Cheong, O
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (02): : 183 - 194
  • [29] Incremental Voronoi Diagrams
    Sarah R. Allen
    Luis Barba
    John Iacono
    Stefan Langerman
    Discrete & Computational Geometry, 2017, 58 : 822 - 848
  • [30] Incremental Voronoi Diagrams
    Allen, Sarah R.
    Barba, Luis
    Iacono, John
    Langerman, Stefan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (04) : 822 - 848