On Higher Order Voronoi Diagrams of Line Segments

被引:0
|
作者
Papadopoulou, Evanthia [1 ]
Zavershynskyi, Maksym [1 ]
机构
[1] Univ Svizzera Italiana, Fac Informat, Lugano, Switzerland
来源
ALGORITHMS AND COMPUTATION, ISAAC 2012 | 2012年 / 7676卷
关键词
computational geometry; Voronoi diagrams; line segments; higher order Voronoi diagrams; PLANE; SET;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyze structural properties of the order-k Voronoi diagram of line segments, which surprisingly has not received any attention in the computational geometry literature. We show that order-k Voronoi regions of line segments may be disconnected; in fact a single order-k Voronoi region may consist of Omega(n) disjoint faces. Nevertheless, the structural complexity of the order-k Voronoi diagram of non-intersecting segments remains O(k(n -k)) similarly to points. For intersecting line segments the structural complexity remains O(k(n -k)) for k >= n/2.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [1] The Higher-Order Voronoi Diagram of Line Segments
    Papadopoulou, Evanthia
    Zavershynskyi, Maksym
    ALGORITHMICA, 2016, 74 (01) : 415 - 439
  • [2] The Higher-Order Voronoi Diagram of Line Segments
    Evanthia Papadopoulou
    Maksym Zavershynskyi
    Algorithmica, 2016, 74 : 415 - 439
  • [3] On the Complexity of Higher Order Abstract Voronoi Diagrams
    Bohler, Cecilia
    Cheilaris, Panagiotis
    Klein, Rolf
    Liu, Chih-Hung
    Papadopoulou, Evanthia
    Zavershynskyi, Maksym
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2013, 7965 : 208 - 219
  • [4] On the complexity of higher order abstract Voronoi diagrams
    Bohler, Cecilia
    Cheilaris, Panagiotis
    Klein, Rolf
    Liu, Chih-Hung
    Papadopoulou, Evanthia
    Zavershynskyi, Maksym
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (08): : 539 - 551
  • [5] Unbounded Regions of High-Order Voronoi Diagrams of Lines and Line Segments in Higher Dimensions
    Barequet, Gill
    Papadopoulou, Evanthia
    Suderland, Martin
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 72 (03) : 1304 - 1332
  • [6] A Faster Algorithm of Higher Order Voronoi Diagrams
    Hu, Lixia
    Liu, Hongjuan
    Xu, Baiquan
    2015 SEVENTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2015), 2015, : 6 - 9
  • [7] A Sweepline Algorithm for Higher Order Voronoi Diagrams
    Zavershynskyi, Maksym
    Papadopoulou, Evanthia
    2013 TENTH INTERNATIONAL SYMPOSIUM ON VORONOI DIAGRAMS IN SCIENCE AND ENGINEERING (ISVD), 2013, : 16 - 22
  • [8] Voronoi diagrams on line segments:: Measurements for contextual generalization purposes
    Hangouët, JF
    Djadri, R
    SPATIAL INFORMATION THEORY: A THEORETICAL BASIC FOR GIS, 1997, 1329 : 207 - 222
  • [9] Swap conditions for dynamic Voronoi diagrams for circles and line segments
    Gavrilova, M
    Rokne, J
    COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (02) : 89 - 106
  • [10] A SIMPLE ON-LINE RANDOMIZED INCREMENTAL ALGORITHM FOR COMPUTING HIGHER ORDER VORONOI DIAGRAMS
    Aurenhammer, Franz
    Schwarzkopf, Otfried
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1992, 2 (04) : 363 - 381