The radial defocusing energy-supercritical cubic nonlinear wave equation in R1+5

被引:9
作者
Bulut, Aynur [1 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
global well-posedness; radial nonlinear wave equation; energy-supercritical; frequency localized Morawetz inequality; GLOBAL WELL-POSEDNESS; SCHRODINGER-EQUATION; BLOW-UP; SCATTERING; DIMENSIONS; NLS;
D O I
10.1088/0951-7715/27/8/1859
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we establish a frequency localized version of the classical Morawetz inequality adapted to almost periodic solutions of the defocusing cubic nonlinear wave equation in dimension d = 5. As an application, we conclude that radial solutions to this equation that remain bounded in the critical homogeneous Sobolev space exist globally in time and scatter.
引用
收藏
页码:1859 / 1877
页数:19
相关论文
共 25 条
[1]  
Beckner W, 2008, P AM MATH SOC, V136, P1871
[2]  
Bulut A, 2011, T AM MATH S IN PRESS
[3]  
Bulut A, 2009, COMMUN PART DIFF EQ, V38, P575
[4]   Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation [J].
Bulut, Aynur .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) :1609-1660
[5]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[6]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[7]  
Dodson B, 2012, J AM MATH SOC, V25, P429
[8]   GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :50-68
[9]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980
[10]  
Kenig C, 2008, AM J MATH, V133, P1029