Homomorphisms from C(X) into C*-algebras

被引:15
作者
Lin, HX [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1997年 / 49卷 / 05期
关键词
homomorphism of C(S-2); approximation; real rank zero; classification;
D O I
10.4153/CJM-1997-050-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a simple C*-algebra with real rank zero, stable rank one and weakly unperforated K-0(A) of countable rank. We show that a monomorphism phi: C(S-2) --> A can be approximated pointwise by homomorphisms from C(S-2) into A with finite dimensional range if and only if certain index vanishes. In particular, we show that every homomorphism phi from C(S-2) into a UHF-algebra can be approximated pointwise by homomorphisms from C(S-2) into the UHF-algebra with finite dimensional range. As an application, we show that if A is a simple C*-algebra of real rank zero and is an inductive limit of matrices over C(S-2) then A is an AF-algebra. Similar results for tori are also obtained. Classification of Hom (C(X),A) for lower dimensional spaces is also studied.
引用
收藏
页码:963 / 1009
页数:47
相关论文
共 75 条
[1]  
AKEMANN CA, 1985, MEM AM MATH SOC, V55
[2]  
[Anonymous], 1955, P AM MATH SOC
[3]  
BERG ID, 1981, P ROY IRISH ACAD A, V81, P43
[4]   ALMOST COMMUTING MATRICES AND A QUANTITATIVE VERSION OF THE BROWN-DOUGLAS-FILLMORE THEOREM [J].
BERG, ID ;
DAVIDSON, KR .
ACTA MATHEMATICA, 1991, 166 (1-2) :121-161
[5]   DIMENSION FUNCTIONS AND TRACES ON C-STAR-ALGEBRAS [J].
BLACKADAR, B ;
HANDELMAN, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 45 (03) :297-340
[6]   THE REAL RANK OF INDUCTIVE LIMIT C-ASTERISK-ALGEBRAS [J].
BLACKADAR, B ;
DADARLAT, M ;
RORDAM, M .
MATHEMATICA SCANDINAVICA, 1991, 69 (02) :211-216
[7]   REDUCTION OF REAL RANK IN INDUCTIVE LIMITS OF C-ALGEBRAS [J].
BLACKADAR, B ;
BRATTELI, O ;
ELLIOTT, GA ;
KUMJIAN, A .
MATHEMATISCHE ANNALEN, 1992, 292 (01) :111-126
[8]  
Blackadar B., 1992, K-THEORY, V6, P267, DOI DOI 10.1007/BF00961466
[9]  
BLACKADAR B, 1982, NOTES STRUCTURE PROJ
[10]  
Blackadar B., 1986, K THEORY OPERATOR AL, V5, DOI 10.1007/978-1-4613-9572-0