Numerical evaluation of crack growth in polymer electrolyte fuel cell membranes based on plastically dissipated energy

被引:42
作者
Ding, Guoliang [1 ]
Santare, Michael H. [1 ]
Karlsson, Anette M. [2 ]
Kusoglu, Ahmet [3 ]
机构
[1] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA
[2] Cleveland State Univ, Washkewicz Coll Engn, Cleveland, OH 44115 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
关键词
Polymer electrolyte membrane (PEM); Durability; Fatigue; Cyclic crack growth; Plastically dissipated energy; Numerical simulation; PROTON-EXCHANGE MEMBRANE; SULFONIC-ACID MEMBRANE; COMPOSITE MEMBRANES; MECHANICAL-BEHAVIOR; HUMIDITY CYCLES; FATIGUE; DEGRADATION; DURABILITY; TIME; STRESS;
D O I
10.1016/j.jpowsour.2016.03.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the mechanisms of growth of defects in polymer electrolyte membrane (PEM) fuel cells is essential for improving cell longevity. Characterizing the crack growth in PEM fuel cell membrane under relative humidity (RH) cycling is an important step towards establishing strategies essential for developing more durable membrane electrode assemblies (MEA). In this study, a crack propagation criterion based on plastically dissipated energy is investigated numerically. The accumulation of plastically dissipated energy under cyclical RH loading ahead of the crack tip is calculated and compared to a critical value, presumed to be a material parameter. Once the accumulation reaches the critical value, the crack propagates via a node release algorithm. From the literature, it is well established experimentally that membranes reinforced with expanded polytetrafluoroethylene (ePTFE) reinforced perfluorosulfonic acid (PFSA) have better durability than unreinforced membranes, and through-thickness cracks are generally found under the flow channel regions but not land regions in unreinforced PFSA membranes. We show that the proposed plastically dissipated energy criterion captures these experimental observations and provides a framework for investigating failure mechanisms in ionomer membranes subjected to similar environmental loads. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 123
页数:10
相关论文
共 64 条
[1]  
[Anonymous], 2012, PEM FUEL CELLS THEOR
[2]  
[Anonymous], 2010, ABAQUS AN US MAN
[3]  
[Anonymous], 2005, Engineering Damage Mechanics
[4]   Humidity and Temperature Cycling Effects on Cracks and Delaminations in PEMFCs [J].
Banan, R. ;
Zu, J. ;
Bazylak, A. .
FUEL CELLS, 2015, 15 (02) :327-336
[5]   WHAT HAPPENS TO THE ENERGY INPUT DURING FATIGUE CRACK-PROPAGATION [J].
BIROL, Y .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1988, 104 :117-124
[6]   A DESCRIPTION OF FATIGUE CRACK-GROWTH IN TERMS OF PLASTIC WORK [J].
BODNER, SR ;
DAVIDSON, DL ;
LANKFORD, J .
ENGINEERING FRACTURE MECHANICS, 1983, 17 (02) :189-191
[7]   Scientific aspects of polymer electrolyte fuel cell durability and degradation [J].
Borup, Rod ;
Meyers, Jeremy ;
Pivovar, Bryan ;
Kim, Yu Seung ;
Mukundan, Rangachary ;
Garland, Nancy ;
Myers, Deborah ;
Wilson, Mahlon ;
Garzon, Fernando ;
Wood, David ;
Zelenay, Piotr ;
More, Karren ;
Stroh, Ken ;
Zawodzinski, Tom ;
Boncella, James ;
McGrath, James E. ;
Inaba, Minoru ;
Miyatake, Kenji ;
Hori, Michio ;
Ota, Kenichiro ;
Ogumi, Zempachi ;
Miyata, Seizo ;
Nishikata, Atsushi ;
Siroma, Zyun ;
Uchimoto, Yoshiharu ;
Yasuda, Kazuaki ;
Kimijima, Ken-ichi ;
Iwashita, Norio .
CHEMICAL REVIEWS, 2007, 107 (10) :3904-3951
[8]   PEM Fuel Cell Degradation [J].
Borup, Rodney L. ;
Mukundan, Rangachary .
POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01) :17-26
[9]   New criterion for craze initiation [J].
Bucknall, C. B. .
POLYMER, 2007, 48 (04) :1030-1041
[10]   A polymer electrolyte fuel cell life test: 3 years of continuous operation [J].
Cleghorn, S. J. C. ;
Mayfield, D. K. ;
Moore, D. A. ;
Moore, J. C. ;
Rusch, G. ;
Sherman, T. W. ;
Sisofo, N. T. ;
Beuscher, U. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :446-454