On a Family of Infinite Series with Reciprocal Catalan Numbers

被引:1
作者
Adegoke, Kunle [1 ]
Frontczak, Robert [2 ]
Goy, Taras [3 ]
机构
[1] Obafemi Awolowo Univ, Dept Phys & Engn Phys, Ife 220005, Nigeria
[2] Landesbank Baden Wurttemberg, D-70173 Stuttgart, Germany
[3] Vasyl Stefanyk Precarpathian Natl Univ, Fac Math & Comp Sci, UA-76018 Ivano Frankivsk, Ukraine
关键词
Catalan numbers; infinite series; Fibonacci numbers; Lucas numbers; Stirling numbers; Mellin transform; GENERATING-FUNCTIONS; POLYNOMIALS; POWERS; SUMS;
D O I
10.3390/axioms11040165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a certain family of infinite series with reciprocal Catalan numbers. We first evaluate two special candidates of the family in closed form, where we also present some Catalan-Fibonacci relations. Then, we focus on the general properties of the family and prove explicit formulas, including two types of integral representations.
引用
收藏
页数:14
相关论文
共 31 条
  • [1] Abel U, 2016, AM MATH MON, V123, P405
  • [2] Adegoke K., 2022, PALESTINE MATH J, V11, P66
  • [3] Adegoke K., 2021, ARXIV211200622
  • [4] A series involving Catalan numbers: Proofs and demonstrations
    Amdeberhan, T.
    Guan, X.
    Jiu, L.
    Moll, V. H.
    Vignat, C.
    [J]. ELEMENTE DER MATHEMATIK, 2016, 71 (03) : 109 - 121
  • [5] Barry P., 2021, J INTEGER SEQ, V24, P5
  • [6] On the multidimensional zeta functions associated with theta functions, and the multidimensional Appell polynomials
    Bayad, Abdelmejid
    Hajli, Mounir
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2679 - 2694
  • [7] Beckwith D., 2014, AM MATH MON, V121, P267, DOI [DOI 10.4169/AMER.MATH.MONTHLY.121.03.266, https://doi.org/10.4169/amer.math.monthly.121.03.266]
  • [8] On the explicit formulas for zeta functions
    Bouarroudj, Sofiane
    Hajli, Mounir
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 10249 - 10261
  • [9] Alternating Convolutions of Catalan Numbers
    Chu, Wenchang
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (01): : 95 - 105
  • [10] Debnath L., 2014, INTEGRAL TRANSFORMS, DOI DOI 10.1201/617670