Frontiers of light manipulation in natural, metallic, and dielectric nanostructures

被引:32
作者
De Tommasi, E. [1 ]
Esposito, E. [1 ]
Romano, S. [1 ]
Crescitelli, A. [1 ]
Di Meo, V. [1 ]
Mocella, V. [1 ]
Zito, G. [1 ]
Rendina, I. [2 ]
机构
[1] CNR, Ist Sci Applicate & Sistemi Intelligenti, Sede Secondaria Napoli, Via P Castellino 111, Naples, Italy
[2] CNR, Ist Sci Applicate & Sistemi Intelligenti, Via Campi Flegrei 34, Pozzuoli, NA, Italy
来源
RIVISTA DEL NUOVO CIMENTO | 2021年 / 44卷 / 01期
关键词
Nanophotonics; Natural photonic structures; Plasmonics; Dielectric nanophotonics; Metasurfaces; Advanced photonic sensors; SURFACE-ENHANCED RAMAN; 3RD HARMONIC-GENERATION; ELECTRON-BEAM LITHOGRAPHY; QUASI-BOUND STATES; INFRARED-ABSORPTION; FIELD ENHANCEMENT; BROAD-BAND; NANOSPHERE LITHOGRAPHY; NANOANTENNA ARRAYS; TRIANGULAR NANOPRISMS;
D O I
10.1007/s40766-021-00015-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ability to control light at the nanoscale is at the basis of contemporary photonics and plasmonics. In particular, properly engineered periodic nanostructures not only allow the inhibition of propagation of light at specific spectral ranges or its confinement in nanocavities or waveguides, but make also possible field enhancement effects in vibrational, Raman, infrared and fluorescence spectroscopies, paving the way to the development of novel high-performance optical sensors. All these devices find an impressive analogy in nearly-periodic photonic nanostructures present in several plants, animals and algae, which can represent a source of inspiration in the development and optimization of new artificial nano-optical systems. Here we present the main properties and applications of cutting-edge nanostructures starting from several examples of natural photonic architectures, up to the most recent technologies based on metallic and dielectric metasurfaces.
引用
收藏
页码:1 / 68
页数:68
相关论文
共 410 条
[1]   General Metasurface Synthesis Based on Susceptibility Tensors [J].
Achouri, Karim ;
Salem, Mohamed A. ;
Caloz, Christophe .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (07) :2977-2991
[2]   Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy [J].
Adato, Ronen ;
Aksu, Serap ;
Altug, Hatice .
MATERIALS TODAY, 2015, 18 (08) :436-446
[3]   Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet A. ;
Amsden, Jason J. ;
Kaplan, David L. ;
Omenetto, Fiorenzo G. ;
Hong, Mi K. ;
Erramilli, Shyamsunder ;
Altug, Hatice .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) :19227-19232
[4]   ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE [J].
ALBRECHT, MG ;
CREIGHTON, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :5215-5217
[5]   Surface-Enhanced Resonance Raman Scattering on Gold Concentric Rings: Polarization Dependence and Intensity Fluctuations [J].
Andrade, Gustavo F. S. ;
Min, Qiao ;
Gordon, Reuven ;
Brolo, Alexandre G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (04) :2672-2676
[6]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[7]  
[Anonymous], 2018, ARXIV180804811
[8]  
[Anonymous], 2017, ARXIV170802197
[9]  
Anthur, 2020, NANO LETT
[10]  
Arshak K, 2005, J OPTOELECTRON ADV M, V7, P193