Bayesian Computation through Cortical Latent Dynamics

被引:126
作者
Sohn, Hansem [1 ]
Narain, Devika [1 ,3 ]
Meirhaeghe, Nicolas [2 ]
Jazayeri, Mehrdad [1 ]
机构
[1] MIT, Dept Brain & Cognit Sci, McGovern Inst Brain Res, Cambridge, MA 02139 USA
[2] Harvard MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] Erasmus MC, NL-3015 CN Rotterdam, Netherlands
基金
美国国家科学基金会;
关键词
SUPPLEMENTARY EYE FIELD; NEURONAL-ACTIVITY; PREMOTOR CORTEX; TRANSIENT DYNAMICS; PRIOR EXPECTATIONS; DECISION-MAKING; ELAPSED TIME; MOTOR AREA; MOVEMENT; NETWORK;
D O I
10.1016/j.neuron.2019.06.012
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged and has had a major impact on models of perception, sensorimotor function, and cognition. However, it is not known how recurrent interactions among neurons mediate Bayesian integration. By using a time-interval reproduction task in monkeys, we found that prior statistics warp neural representations in the frontal cortex, allowing the mapping of sensory inputs to motor outputs to incorporate prior statistics in accordance with Bayesian inference. Analysis of recurrent neural network models performing the task revealed that this warping was enabled by a low-dimensional curved manifold and allowed us to further probe the potential causal underpinnings of this computational strategy. These results uncover a simple and general principle whereby prior beliefs exert their influence on behavior by sculpting cortical latent dynamics.
引用
收藏
页码:934 / +
页数:19
相关论文
共 103 条
[1]   Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing [J].
Acerbi, Luigi ;
Wolpert, Daniel M. ;
Vijayakumar, Sethu .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (11)
[2]   Single-Trial Neural Correlates of Arm Movement Preparation [J].
Afshar, Afsheen ;
Santhanam, Gopal ;
Yu, Byron M. ;
Ryu, Stephen I. ;
Sahani, Maneesh ;
Shenoy, Krishna V. .
NEURON, 2011, 71 (03) :555-564
[3]   Posterior parietal cortex represents sensory history and mediates its effects on behaviour [J].
Akrami, Athena ;
Kopec, Charles D. ;
Diamond, Mathew E. ;
Brody, Carlos D. .
NATURE, 2018, 554 (7692) :368-+
[4]   Multisensory integration: psychophysics, neurophysiology, and computation [J].
Angelaki, Dora E. ;
Gu, Yong ;
DeAngelis, Gregory C. .
CURRENT OPINION IN NEUROBIOLOGY, 2009, 19 (04) :452-458
[5]   Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control [J].
Athalye, Vivek R. ;
Ganguly, Karunesh ;
Costa, Rui M. ;
Carmena, Jose M. .
NEURON, 2017, 93 (04) :955-+
[6]   NEUROSCIENCE Neural population control via deep image synthesis [J].
Bashivan, Pouya ;
Kar, Kohitij ;
DiCarlo, James J. .
SCIENCE, 2019, 364 (6439) :453-+
[7]   Modulation of neuronal activity by target uncertainty [J].
Basso, MA ;
Wurtz, RH .
NATURE, 1997, 389 (6646) :66-69
[8]   Probabilistic Population Codes for Bayesian Decision Making [J].
Beck, Jeffrey M. ;
Ma, Wei Ji ;
Kiani, Roozbeh ;
Hanks, Tim ;
Churchland, Anne K. ;
Roitman, Jamie ;
Shadlen, Michael N. ;
Latham, Peter E. ;
Pouget, Alexandre .
NEURON, 2008, 60 (06) :1142-1152
[9]   Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment [J].
Berkes, Pietro ;
Orban, Gergo ;
Lengyel, Mate ;
Fiser, Jozsef .
SCIENCE, 2011, 331 (6013) :83-87
[10]   State-dependent computations: spatiotemporal processing in cortical networks [J].
Buonomano, Dean V. ;
Maass, Wolfgang .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (02) :113-125