Experience-based iterative learning controllers for robotic systems

被引:9
作者
Arif, M [1 ]
Ishihara, T [1 ]
Inooka, H [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Prof Inookas Lab, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
iterative learning; control; trajectory tracking; convergences; robotic systems;
D O I
10.1023/A:1022399105710
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An experience based iterative learning controller is proposed for a general class of robotic systems. Experience of the iterative learning controller is stored in the memory in terms of input output data and later used for the prediction of the initial control input for a new desired trajectory. It is proved in this paper that using this approach we can reduce the number of iterations to achieve a certain user defined tracking accuracy. This approach is very general and applicable to all kinds of existing iterative learning control schemes. Numerical illustrations showed the effectiveness of the proposed method.
引用
收藏
页码:381 / 396
页数:16
相关论文
共 15 条
[1]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[2]   BETTERING OPERATION OF ROBOTS BY LEARNING [J].
ARIMOTO, S ;
KAWAMURA, S ;
MIYAZAKI, F .
JOURNAL OF ROBOTIC SYSTEMS, 1984, 1 (02) :123-140
[3]  
ARMITO S, 1984, P 23 IEEE C DEC CONT, P1064
[4]  
Atkeson CG, 1997, ARTIF INTELL REV, V11, P75, DOI 10.1023/A:1006511328852
[5]  
Atkeson CG, 1997, ARTIF INTELL REV, V11, P11, DOI 10.1023/A:1006559212014
[6]   A NONLINEAR ITERATIVE LEARNING-METHOD FOR ROBOT PATH CONTROL [J].
BIEN, ZN ;
HWANG, DH ;
OH, SR .
ROBOTICA, 1991, 9 :387-392
[7]  
Chien CJ, 1996, IEEE DECIS CONTR P, P3056, DOI 10.1109/CDC.1996.573591
[8]   LOCALLY WEIGHTED REGRESSION - AN APPROACH TO REGRESSION-ANALYSIS BY LOCAL FITTING [J].
CLEVELAND, WS ;
DEVLIN, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :596-610
[9]  
Kawamura S., 1986, Transactions of the Society of Instrument and Control Engineers, V22, P56
[10]  
Nadaraya E. A., 1964, THEOR PROBAB APPL, V9, P141, DOI DOI 10.1137/1109020