Quasi-continuous random variables and processes under the G-expectation framework

被引:45
作者
Hu, Mingshang [1 ]
Wang, Falei [2 ,3 ]
Zheng, Guoqiang [3 ]
机构
[1] Shandong Univ, Zhongtai Inst Finance, Jinan 250100, Peoples R China
[2] Shandong Univ, Inst Adv Res, Jinan 250100, Peoples R China
[3] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
G-expectation; G-Brownian motion; Quasi-continuous; Krylov's estimates; G-BROWNIAN MOTION; STOCHASTIC CALCULUS; THEOREM; DRIVEN;
D O I
10.1016/j.spa.2016.02.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we first use PDE techniques and probabilistic methods to identify a kind of quasi continuous random variables. Then we give a characterization of the G-integrable processes and get a kind of quasi-continuous processes by Krylov's estimates. This result is useful for the development of G-stochastic analysis theory. Moreover, it also provides a tool for the study of the non-Markovian Ito processes. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2367 / 2387
页数:21
相关论文
共 19 条
[1]  
[Anonymous], ARXIV10024546
[2]   Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths [J].
Denis, Laurent ;
Hu, Mingshang ;
Peng, Shige .
POTENTIAL ANALYSIS, 2011, 34 (02) :139-161
[3]  
Hu M., 2014, ARXIV14103538
[4]   On Representation Theorem of G-Expectations and Paths of G-Brownian Motion [J].
Hu, Ming-shang ;
Peng, Shi-ge .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2009, 25 (03) :539-546
[5]   A Stochastic Recursive Optimal Control Problem Under the G-expectation Framework [J].
Hu, Mingshang ;
Ji, Shaolin ;
Yang, Shuzhen .
APPLIED MATHEMATICS AND OPTIMIZATION, 2014, 70 (02) :253-278
[6]   Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion [J].
Hu, Mingshang ;
Ji, Shaolin ;
Peng, Shige ;
Song, Yongsheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (02) :1170-1195
[7]   Backward stochastic differential equations driven by G-Brownian motion [J].
Hu, Mingshang ;
Ji, Shaolin ;
Peng, Shige ;
Song, Yongsheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) :759-784
[8]  
KRYLOV N. V., 1980, Controlled Diffusion Processes
[9]  
KRYLOV NV, 1987, MATH USSR SB, V58, P207
[10]   Stopping times and related Ito's calculus with G-Brownian motion [J].
Li, Xinpeng ;
Peng, Shige .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (07) :1492-1508