Prediction of fatigue crack growth retardation using a cyclic cohesive zone model

被引:18
|
作者
Li, Huan [1 ]
Li, Chun [1 ]
Yuan, Huang [2 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710129, Peoples R China
[2] Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Irreversible cohesive law; Crack growth retardation; Overload; Fatigue damage; Cyclic plasticity; SIMULATION; DEFORMATION; PLASTICITY; LAW;
D O I
10.1007/s00419-017-1232-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Cohesive zone modeling of fatigue crack growth retardation in aerospace titanium alloy Ti-6Al-4V subjected to a single overload during constant amplitude is presented in this work. The cyclic softening behavior of the bulk material is simulated according to the Ohno-Wang's cyclic plasticity theory. The fracture process zone is represented by an irreversible cohesive law which governs the material separation of fatigue crack. The material degradation mechanism is described by the gradual reduction of the unloading cohesive stiffness after each loading cycle. The fatigue crack growth behaviors are examined using the proposed cohesive model under both constant and variable amplitude loadings. The computational results are verified according to the experimental data, which confirm that the present model can be applied to predict the transient retardation in fatigue crack growth rate of the Ti-6Al-4V alloy accurately.
引用
收藏
页码:1061 / 1075
页数:15
相关论文
共 50 条
  • [1] Prediction of fatigue crack growth retardation using a cyclic cohesive zone model
    Huan Li
    Chun Li
    Huang Yuan
    Archive of Applied Mechanics, 2017, 87 : 1061 - 1075
  • [2] A cohesive zone model for fatigue crack growth allowing for crack retardation
    Ural, Ani
    Krishnan, Venkat R.
    Papoulia, Katerina D.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (11-12) : 2453 - 2462
  • [3] Simulation of fatigue crack growth with a cyclic cohesive zone model
    Stephan Roth
    Geralf Hütter
    Meinhard Kuna
    International Journal of Fracture, 2014, 188 : 23 - 45
  • [4] Simulation of fatigue crack growth with a cyclic cohesive zone model
    Roth, Stephan
    Huetter, Geralf
    Kuna, Meinhard
    INTERNATIONAL JOURNAL OF FRACTURE, 2014, 188 (01) : 23 - 45
  • [5] Numerical simulation of fatigue crack growth rate and crack retardation due to an overload using a cohesive zone model
    Silitonga, Sarmediran
    Maljaars, Johan
    Soetens, Frans
    Snijder, Hubertus H.
    11TH INTERNATIONAL FATIGUE CONGRESS, PTS 1 AND 2, 2014, 891-892 : 777 - +
  • [6] The Cohesive Zone Model for Fatigue Crack Growth
    Liu, Jinxiang
    Li, Jun
    Wu, Bo
    ADVANCES IN MECHANICAL ENGINEERING, 2013,
  • [7] Development of a Cohesive Zone Model for Fatigue Crack Growth
    Yeong-Hun Choi
    Hyun-Gyu Kim
    Multiscale Science and Engineering, 2020, 2 (1) : 42 - 53
  • [8] A cohesive zone model for fatigue crack growth allowing for crack retardation (vol 46, pg 2453, 2009)
    Ural, Ani
    Krishnan, Venkat R.
    Papoulia, Katerina D.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (18-19) : 3503 - 3503
  • [9] A modified cyclic cohesive zone model for fatigue crack initiation prediction for mooring chain steels
    Song, Zhi-Hao
    Chen, Nian-Zhong
    ENGINEERING FRACTURE MECHANICS, 2024, 300
  • [10] CYCLIC COHESIVE ZONE MODEL (CCZM)-BASED FATIGUE CRACK INITIATION PREDICTION FOR A MOORING CHAIN
    Song, Zhi-Hao
    Chen, Nian-Zhong
    Zheng, Tingsen
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 2, 2024,