On bisectors in Minkowski normed spaces

被引:19
作者
Horváth, AG [1 ]
机构
[1] Tech Univ Budapest, Dept Geometry, H-1521 Budapest, Hungary
关键词
Unit Ball; Normed Space; Point Lattice; Strict Convexity; Converse Statement;
D O I
10.1023/A:1010611925838
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the concept of the bisector of a segment in a Minkowski normed n-space, and prove that if the unit ball It of the space is strictly convex then all bisectors are topological images of a hyperplane of the embedding Euclidean n-space. The converse statement is not true. We give an example in the three-space showing that all bisectors are topological planes, however K contains segments on its boundary. Strict convexity ensures the normality of Dirichlet-Voronoi-type K-subdivison of any point lattice.
引用
收藏
页码:233 / 246
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 1958, NORMED LINEAR SPACES
[3]   HOMOTHETIC ELLIPSOIDS [J].
GOODEY, PR .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1983, 93 (JAN) :25-34
[4]  
GOODEY PR, 1982, GEOMETRIC VEIN
[5]  
GRUBER P, 1974, J REINE ANGEW MATH, V270, P123
[6]   CHARACTERISTIC PROPERTIES OF ELLIPSOIDS AND CUCLIDIAN SPACESIII [J].
GRUBER, P .
MONATSHEFTE FUR MATHEMATIK, 1974, 78 (04) :311-340
[7]  
Gruber P. M., 1987, GEOMETRY NUMBERS
[8]   ORTHOGONALITY IN NORMED LINEAR SPACES [J].
JAMES, RC .
DUKE MATHEMATICAL JOURNAL, 1945, 12 (02) :291-302
[9]  
Mann H., 1935, MONATSH MATH PHYS, V42, P417, DOI 10.1007/BF01733304
[10]  
PONTRIAGIN LS, 1955, T MAT I AN CCCP, V45