Finite element method;
space-time white noise;
Backward Euler time-stepping;
fully-discrete approximations;
a priori error estimates;
DISCRETIZATION;
D O I:
10.1051/m2an/2010003
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider an initial and Dirichlet boundary value problem for a fourth-order linear stochastic parabolic equation, in one space dimension, forced by an additive space-time white noise. Discretizing the space-time white noise a modelling error is introduced and a regularized fourth-order linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized problem are constructed by using, for discretization in space, a Galerkin finite element method based on C-0 or C-1 piecewise polynomials, and, for time-stepping, the Backward Euler method. We derive strong a priori estimates for the modelling error and for the approximation error to the solution of the regularized problem.
机构:
Univ Paris 01, Stat Anal & Modelisat Multidisciplinaire, SAMM, EA 4543, 90 Rue Tolbiac, F-75013 Paris, France
Univ Paris, Lab Probabilites Stat & Modelisat, LPSM, UMR 8001, Batiment Sophie Germain, Paris, FranceUniv Paris 01, Stat Anal & Modelisat Multidisciplinaire, SAMM, EA 4543, 90 Rue Tolbiac, F-75013 Paris, France
Millet, Annie
Roudenko, Svetlana
论文数: 0引用数: 0
h-index: 0
机构:
Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USAUniv Paris 01, Stat Anal & Modelisat Multidisciplinaire, SAMM, EA 4543, 90 Rue Tolbiac, F-75013 Paris, France
Roudenko, Svetlana
Yang, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USAUniv Paris 01, Stat Anal & Modelisat Multidisciplinaire, SAMM, EA 4543, 90 Rue Tolbiac, F-75013 Paris, France