FULLY-DISCRETE FINITE ELEMENT APPROXIMATIONS FOR A FOURTH-ORDER LINEAR STOCHASTIC PARABOLIC EQUATION WITH ADDITIVE SPACE-TIME WHITE NOISE

被引:15
作者
Kossioris, Georgios T. [1 ]
Zouraris, Georgios E.
机构
[1] Univ Crete, Dept Math, Iraklion 71409, Crete, Greece
关键词
Finite element method; space-time white noise; Backward Euler time-stepping; fully-discrete approximations; a priori error estimates; DISCRETIZATION;
D O I
10.1051/m2an/2010003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an initial and Dirichlet boundary value problem for a fourth-order linear stochastic parabolic equation, in one space dimension, forced by an additive space-time white noise. Discretizing the space-time white noise a modelling error is introduced and a regularized fourth-order linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized problem are constructed by using, for discretization in space, a Galerkin finite element method based on C-0 or C-1 piecewise polynomials, and, for time-stepping, the Backward Euler method. We derive strong a priori estimates for the modelling error and for the approximation error to the solution of the regularized problem.
引用
收藏
页码:289 / 322
页数:34
相关论文
共 29 条
[11]  
Dunford N., 1963, Linear Operators, V1st edition
[12]  
Golub GH., 1989, MATRIX COMPUTATIONS, DOI DOI 10.56021/9781421407944
[13]   Time-discretised galerkin approximations of parabolic stochastic PDES [J].
Grecksch, W ;
Kloeden, PE .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (01) :79-85
[14]   Numerical analysis of semilinear stochastic evolution equations in Banach spaces [J].
Hausenblas, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 147 (02) :485-516
[15]   Approximation for semilinear stochastic evolution equations [J].
Hausenblas, E .
POTENTIAL ANALYSIS, 2003, 18 (02) :141-186
[16]  
Kallianpur G., 1995, IMS Lecture Notes Monograph Series, V26
[17]   Spinodal decomposition of symmetric diblock copolymer homopolymer blends at the Lifshitz point [J].
Kielhorn, L ;
Muthukumar, M .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08) :4079-4089
[18]  
Kloeden PE., 2001, J APPL MATH STOCHAST, V14, P47
[19]  
KOSSIORIS GT, 2008, 20082 TRITANA KTH SC
[20]  
Lions J. L., 1972, Non-Homogeneous Boundary-Value Problems and Applications