FULLY-DISCRETE FINITE ELEMENT APPROXIMATIONS FOR A FOURTH-ORDER LINEAR STOCHASTIC PARABOLIC EQUATION WITH ADDITIVE SPACE-TIME WHITE NOISE

被引:15
作者
Kossioris, Georgios T. [1 ]
Zouraris, Georgios E.
机构
[1] Univ Crete, Dept Math, Iraklion 71409, Crete, Greece
关键词
Finite element method; space-time white noise; Backward Euler time-stepping; fully-discrete approximations; a priori error estimates; DISCRETIZATION;
D O I
10.1051/m2an/2010003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an initial and Dirichlet boundary value problem for a fourth-order linear stochastic parabolic equation, in one space dimension, forced by an additive space-time white noise. Discretizing the space-time white noise a modelling error is introduced and a regularized fourth-order linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized problem are constructed by using, for discretization in space, a Galerkin finite element method based on C-0 or C-1 piecewise polynomials, and, for time-stepping, the Backward Euler method. We derive strong a priori estimates for the modelling error and for the approximation error to the solution of the regularized problem.
引用
收藏
页码:289 / 322
页数:34
相关论文
共 29 条
[1]  
Allen E. J., 1998, STOCH STOCH REP, V64, P117, DOI DOI 10.1080/17442509808834159
[2]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[3]  
Bin L., 2004, THESIS CHALMERS U TE
[4]   ESTIMATION OF LINEAR FUNCTIONALS ON SOBOLEV SPACES WITH APPLICATION TO FOURIER TRANSFORMS AND SPLINE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :112-&
[5]  
Brenner S., 2008, Texts in Applied Mathematics, V15
[6]   Cahn-Hilliard stochastic equation: existence of the solution and of its density [J].
Cardon-Weber, C .
BERNOULLI, 2001, 7 (05) :777-816
[7]  
CARDONWEBER C, 2000, 613 PMA U PAR 6 7 LA
[8]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[9]   BROWNIAN MOTION IN SPINODAL DECOMPOSITION [J].
COOK, HE .
ACTA METALLURGICA, 1970, 18 (03) :297-+
[10]   Stochastic Cahn-Hilliard equation [J].
DaPrato, G ;
Debussche, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (02) :241-263