Architecting Freestanding Sulfur Cathodes for Superior Room-Temperature Na-S Batteries

被引:69
作者
Yang, Huiling [1 ]
Zhou, Si [1 ,2 ]
Zhang, Bin-Wei [1 ]
Chu, Sheng-Qi [3 ]
Guo, Haipeng [1 ]
Gu, Qin-Fen [4 ]
Liu, Hanwen [1 ]
Lei, Yaojie [1 ]
Konstantinov, Konstantin [1 ]
Wang, Yun-Xiao [1 ]
Chou, Shu-Lei [1 ]
Liu, Hua-Kun [1 ]
Dou, Shi-Xue [1 ]
机构
[1] Univ Wollongong, Inst Supercond & Elect Mat, Innovat Campus,Squires Way, Wollongong, NSW 2500, Australia
[2] Dalian Univ Technol, Minist Educ, Key Lab Mat Modificat Laser Ion & Elect Beams, Dalian 116024, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[4] Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia
基金
澳大利亚研究理事会;
关键词
chain-mail catalysts; electron engineering; freestanding sulfur cathodes; high rate capability; sodium-sulfur batteries; FLEXIBLE LITHIUM-SULFUR; CARBON; PERFORMANCE; ENHANCEMENT; WETTABILITY; CAPACITY;
D O I
10.1002/adfm.202102280
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Room-temperature sodium-sulfur (RT Na-S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na-S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain-mail catalysts, consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles (Co@PCNFs), can activate sulfur via electron engineering. The chain-mail catalysts Co@PCNFs with a micrograde hierarchical structure as a freestanding sulfur cathode (Co@PCNFs/S) can provide space for high mass loading of sulfur and polysulfides. The electrons can rapidly transfer from chain-mail catalysts to sulfur and polysulfides during discharge-charge processes, therefore boosting its conversion kinetics. As a result, this freestanding Co@PCNFs/S cathode achieves a high sulfur loading of 2.1 +/- 0.2 mg cm(-2), delivering a high reversible capacity of 398 mA h g(-1) at 0.5 C (1 C = 1675 mA g(-1)) over 600 cycles and superior rate capability of an average capacity of 240 mA h g(-1) at 5 C. Experimental results, combined with density functional theory calculations, demonstrate that the Co@PCNFs/S can efficiently improve the conversion kinetics between the polysulfides and Na2S via transferring electrons from Co to them, thereby realizing efficient sulfur redox reactions.
引用
收藏
页数:9
相关论文
共 43 条
[1]   K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites [J].
Baker, Michael L. ;
Mara, Michael W. ;
Yan, James J. ;
Hodgson, Keith O. ;
Hedman, Britt ;
Solomon, Edward I. .
COORDINATION CHEMISTRY REVIEWS, 2017, 345 :182-208
[2]   Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes [J].
Bauer, I. ;
Kohl, M. ;
Althues, H. ;
Kaskel, S. .
CHEMICAL COMMUNICATIONS, 2014, 50 (24) :3208-3210
[3]   Investigation of the Effect of Using Al2O3-Nafion Barrier on Room-Temperature Na-S Batteries [J].
Cengiz, Elif Ceylan ;
Erdol, Zeynep ;
Sakar, Baha ;
Aslan, Ayse ;
Ata, Ali ;
Ozturk, Osman ;
Demir-Cakan, Rezan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (28) :15120-15126
[4]   Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes [J].
Ding, Jia ;
Wang, Huanlei ;
Li, Zhi ;
Kohandehghan, Alireza ;
Cui, Kai ;
Xu, Zhanwei ;
Zahiri, Beniamin ;
Tan, Xuehai ;
Lotfabad, Elmira Memarzadeh ;
Olsen, Brian C. ;
Mitlin, David .
ACS NANO, 2013, 7 (12) :11004-11015
[5]   Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries [J].
Du, Wenyan ;
Wu, Yuanke ;
Yang, Tingting ;
Guo, Bingshu ;
Liu, Dingyu ;
Bao, Shu-Juan ;
Xu, Maowen .
CHEMICAL ENGINEERING JOURNAL, 2020, 379
[6]   General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities [J].
Fei, Huilong ;
Dong, Juncai ;
Feng, Yexin ;
Allen, Christopher S. ;
Wan, Chengzhang ;
Volosskiy, Boris ;
Li, Mufan ;
Zhao, Zipeng ;
Wang, Yiliu ;
Sun, Hongtao ;
An, Pengfei ;
Chen, Wenxing ;
Guo, Zhiying ;
Lee, Chain ;
Chen, Dongliang ;
Shakir, Imran ;
Liu, Mingjie ;
Hu, Tiandou ;
Li, Yadong ;
Kirkland, Angus I. ;
Duan, Xiangfeng ;
Huang, Yu .
NATURE CATALYSIS, 2018, 1 (01) :63-72
[7]   Three-Dimensionally Reinforced Freestanding Cathode for High Energy Room-Temperature Sodium-Sulfur Batteries [J].
Ghosh, Arnab ;
Kumar, Ajit ;
Roy, Amlan ;
Panda, Manas Ranjan ;
Kar, Mega ;
MacFarlane, Douglas R. ;
Mitra, Sagar .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (15) :14101-14109
[8]   Nickel Hollow Spheres Concatenated by Nitrogen-Doped Carbon Fibers for Enhancing Electrochemical Kinetics of Sodium-Sulfur Batteries [J].
Guo, Bingshu ;
Du, Wenyan ;
Yang, Tingting ;
Deng, Jianhua ;
Liu, Dingyu ;
Qi, Yuruo ;
Jiang, Jian ;
Bao, Shu-Juan ;
Xu, Maowen .
ADVANCED SCIENCE, 2020, 7 (04)
[9]   Ultramicroporous Carbon through an Activation-Free Approach for Li-S and Na-S Batteries in Carbonate-Based Electrolyte [J].
Hu, Lei ;
Lu, Yue ;
Zhang, Tianwen ;
Huang, Tao ;
Zhu, Yongchun ;
Qian, Yitai .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (16) :13813-13818
[10]   Wettability in electrodes and its impact on the performance of lithium-ion batteries [J].
Jeon, Dong Hyup .
ENERGY STORAGE MATERIALS, 2019, 18 :139-147