In-silico screening for identification of potential inhibitors against SARS-CoV-2 transmembrane serine protease 2 (TMPRSS2)

被引:11
作者
Barge, Sagar [1 ]
Jade, Dhananjay [2 ]
Gosavi, Gokul [3 ]
Talukdar, Narayan Chandra [1 ,4 ]
Borah, Jagat [1 ]
机构
[1] Inst Adv Study Sci & Technol, Chem Biol Lab 1, Gauhati 35, Assam, India
[2] JSS Coll Pharm, Dept Pharmaceut Chem, Ooty 643001, Tamil Nadu, India
[3] Chinese Acad Agr Sci, Inst Plant Protect, Beijing, Peoples R China
[4] Assam Down Town Univ, Gauhati 781006, Assam, India
关键词
SARS-CoV-2; Transmembrane serine protease 2; Virtual screening; Molecular Docking; Drug repositioning; DRUG DISCOVERY; TOOL;
D O I
10.1016/j.ejps.2021.105820
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a respiratory infection out broke in December 2019 in Wuhan, Hubei province, China, resulted in pandemic conditions worldwide. COVID-19 spread swiftly around the world over with an alert of an emergency for an adequate drug. Therefore, in this research, we repurposed the FDA-approved medicines to find the prominent drug used to cure the COVID infected patients. We performed homology modeling of the transmembrane serine protease 2 (TMPRSS2), responsible for the viral entry. The prediction of the transmembrane region and the Conserved Domain in TMPRSS2 protein was made for docking. 4182 FDA-approved compounds from the ZINC database were downloaded and used for the calculation of physicochemical properties. Two thousand eight hundred fifteen screened compounds were used for molecular docking against the modelled protein structure. From which top hit compounds based on binding energy were extracted. At 1st site pose, ZINC3830554 showed the highest binding energy -12.91kcal/mol by forming Salt Bridge at LYS143, Hydrogen bond at ALA8, VAL45, HIS47, SER142, ASN277, ASN359, and TRP363. The hydrophobic Interactions at PHE3, LEU4, ALA7, ALA8, ALA139, PRO197, and PHE266. In the 2nd site pose, ZINC203686879 shows the highest binding energy (-12.56 kcal/mol) and forms a hydrophobic interaction with VAL187, VAL189, HIS205, LYS301, GLN347, TRP370 and hydrogen bond was at GLY300, THR302, GLN347, SER350 residues. These hit compounds were subjected to stability checks between the protein-ligand complex through the dynamics simulation (MD), and binding free energy was calculated through the Molecular Mechanics energies combined with Poisson-Boltzmann (MM/PBSA) method. We hope that hit compounds would be an efficient inhibitor that can block the TMPRSS2 activity and resist the entry of the SARS-CoV-2 virus into targeted human cells by reducing the virus's infectivity and transmissibility.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]  
Amanchy R., 2020, CENETIC VARIANTS TMP
[3]   LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFRJ6-1 DNA vaccine [J].
An, LL ;
Yang, YH ;
Ma, XT ;
Lin, YM ;
Li, G ;
Song, YH ;
Wu, KF .
LEUKEMIA RESEARCH, 2005, 29 (05) :535-543
[4]  
Azimi A, 2020, TMPRSS2 INHIBITORS B, DOI [DOI 10.31226/OSF.IO/A3RVM, 10.31226/osf.io/a3rvm]
[5]   New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays [J].
Baell, Jonathan B. ;
Holloway, Georgina A. .
JOURNAL OF MEDICINAL CHEMISTRY, 2010, 53 (07) :2719-2740
[6]   Teicoplanin: an alternative drug for the treatment of COVID-19? [J].
Baron, Sophie Alexandra ;
Devaux, Christian ;
Colson, Philippe ;
Raoult, Didier ;
Rolain, Jean-Marc .
INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2020, 55 (04)
[7]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[8]   BDDCS, the Rule of 5 and drugability [J].
Benet, Leslie Z. ;
Hosey, Chelsea M. ;
Ursu, Oleg ;
Oprea, Tudor I. .
ADVANCED DRUG DELIVERY REVIEWS, 2016, 101 :89-98
[9]   Cleavage and Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by Human Airway Trypsin-Like Protease [J].
Bertram, Stephanie ;
Glowacka, Ilona ;
Mueller, Marcel A. ;
Lavender, Hayley ;
Gnirss, Kerstin ;
Nehlmeier, Inga ;
Niemeyer, Daniela ;
He, Yuxian ;
Simmons, Graham ;
Drosten, Christian ;
Soilleux, Elizabeth J. ;
Jahn, Olaf ;
Steffen, Imke ;
Poehlmann, Stefan .
JOURNAL OF VIROLOGY, 2011, 85 (24) :13363-13372
[10]   BCL::MolAlign: Three-Dimensional Small Molecule Alignment for Pharmacophore Mapping [J].
Brown, Benjamin P. ;
Mendenhall, Jeffrey ;
Meiler, Jens .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (02) :689-701