A proof of the Melvin-Morton conjecture and Feynman diagrams

被引:8
作者
Chmutov, S [1 ]
机构
[1] Program Syst Inst, Pereslavl Zalessky 152140, Russia
关键词
Melvin-Morton conjecture; Vassiliev knot invariants;
D O I
10.1142/S0218216598000036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Melvin-Morton conjecture says how the Alexander-Conway knot invariant function can be read from the coloured Jones function. It has been proved by D. Bar-Natan and S. Garoufalidis. They reduced the conjecture to a statement about weight systems. The proof of the latter is the most difficult part of their paper. We give a new proof of the statement based on the Feynman diagram description of the primitive space of the Hopf algebra A of chord diagrams.
引用
收藏
页码:23 / 40
页数:18
相关论文
共 20 条
  • [1] [Anonymous], ADV SOV MATH
  • [2] [Anonymous], 1971, COMBINATORIAL MATH I
  • [3] On the Melvin-Morton-Rozansky conjecture
    BarNatan, D
    Garoufalidis, S
    [J]. INVENTIONES MATHEMATICAE, 1996, 125 (01) : 103 - 133
  • [4] ON THE VASSILIEV KNOT INVARIANTS
    BARNATAN, D
    [J]. TOPOLOGY, 1995, 34 (02) : 423 - 472
  • [5] BARNATAN D, 1994, SOME COMPUTATIONS RE
  • [6] KNOT POLYNOMIALS AND VASSILIEV INVARIANTS
    BIRMAN, JS
    LIN, XS
    [J]. INVENTIONES MATHEMATICAE, 1993, 111 (02) : 225 - 270
  • [7] Chmutov S. V., 1994, ADV SOVIET MATH, V21, P127
  • [8] Remarks on the Vassiliev knot invariants coming from sl(2)
    Chmutov, SV
    Varchenko, AN
    [J]. TOPOLOGY, 1997, 36 (01) : 153 - 178
  • [9] GUSAROV M, 1995, COMMUNICATION SEP
  • [10] Kassel Ch., 1995, QUANTUM GROUPS