BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction

被引:270
作者
Chen, Xing [1 ]
Xie, Di [2 ]
Wang, Lei [1 ]
Zhao, Qi [2 ,3 ]
You, Zhu-Hong [4 ]
Liu, Hongsheng [3 ,5 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] Liaoning Univ, Sch Math, Shenyang 110036, Liaoning, Peoples R China
[3] Res Ctr Comp Simulating & Informat Proc Biomacrom, Shenyang 110036, Liaoning, Peoples R China
[4] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
[5] Liaoning Univ, Sch Life Sci, Shenyang 110036, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
ESOPHAGEAL CANCER; HUMAN MICRORNA; COLON-CANCER; C-ELEGANS; EXPRESSION; PROFILES; SIMILARITY; PHENOTYPE; LIN-14;
D O I
10.1093/bioinformatics/bty333
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention. Results: In this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings formiRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 6 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level. Availability and implementation: BNPMDA is available via http://www.escience.cn/system/file?fileId=99559. Contact: xingchen@amss.ac.cn or zhaoqi.shenyang@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:3178 / 3186
页数:9
相关论文
共 50 条
  • [31] TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction
    Chen, Xing
    Qu, Jia
    Yin, Jun
    FRONTIERS IN GENETICS, 2018, 9
  • [32] MiRNA-disease association prediction based on meta-paths
    Yu, Liang
    Zheng, Yujia
    Gao, Lin
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [33] MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction
    Chen, Xing
    Yin, Jun
    Qu, Jia
    Huang, Li
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (08)
  • [34] LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction
    Chen, Xing
    Huang, Li
    PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (12)
  • [35] DPFMDA: Distributed and privatized framework for miRNA-Disease association prediction
    Chen, Lixin
    Liu, Bingtao
    Yan, Chenggang
    PATTERN RECOGNITION LETTERS, 2018, 109 : 4 - 11
  • [36] MSHGANMDA: Meta-Subgraphs Heterogeneous Graph Attention Network for miRNA-Disease Association Prediction
    Wang, Shudong
    Wang, Fuyu
    Qiao, Sibo
    Zhuang, Yu
    Zhang, Kuijie
    Pang, Shanchen
    Nowak, Robert
    Lv, Zhihan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (10) : 4639 - 4648
  • [37] Uncover miRNA-Disease Association by Exploiting Global Network Similarity
    Chen, Min
    Lu, Xingguo
    Liao, Bo
    Li, Zejun
    Cai, Lijun
    Gu, Changlong
    PLOS ONE, 2016, 11 (12):
  • [38] CCRMDA: MiRNA-disease Association Prediction Based on Cascade Combination Recommendation Method on a Heterogeneous Network
    Ma, Yuan-Lin
    Yu, Dong-Ling
    Liu, Ya-Fei
    Yu, Zu-Guo
    CURRENT BIOINFORMATICS, 2023, 18 (04) : 310 - 319
  • [39] MSFSP: A Novel miRNA-Disease Association Prediction Model by Federating Multiple-Similarities Fusion and Space Projection
    Zhang, Yi
    Chen, Min
    Cheng, Xiaohui
    Wei, Hanyan
    FRONTIERS IN GENETICS, 2020, 11
  • [40] A network embedding-based multiple information integration method for the MiRNA-disease association prediction
    Gong, Yuchong
    Niu, Yanqing
    Zhang, Wen
    Li, Xiaohong
    BMC BIOINFORMATICS, 2019, 20 (01)