Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO2 Conversion with Carbon-Based Materials

被引:41
作者
Koshy, David M. [1 ,2 ]
Nathan, Sindhu S. [1 ,2 ]
Asundi, Arun S. [1 ,2 ]
Abdellah, Ahmed M. [3 ]
Dull, Samuel M. [1 ]
Cullen, David A. [4 ]
Higgins, Drew [3 ]
Bao, Zhenan [1 ,2 ]
Bent, Stacey F. [1 ,2 ]
Jaramillo, Thomas F. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, 443 Via Ortega, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[3] McMaster Univ, Dept Chem Engn, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
基金
加拿大创新基金会; 美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
carbon dioxide; catalysis; electrochemistry; nitrogen-doped carbon; reverse water-gas shift; GAS SHIFT REACTION; ELECTROCHEMICAL REDUCTION; EVOLUTION; SURFACE; SITES; DIOXIDE; METHANE; DESIGN; PHASE;
D O I
10.1002/anie.202101326
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding the differences between reactions driven by elevated temperature or electric potential remains challenging, largely due to materials incompatibilities between thermal catalytic and electrocatalytic environments. We show that Ni, N-doped carbon (NiPACN), an electrocatalyst for the reduction of CO2 to CO (CO2R), can also selectively catalyze thermal CO2 to CO via the reverse water gas shift (RWGS) representing a direct analogy between catalytic phenomena across the two reaction environments. Advanced characterization techniques reveal that NiPACN likely facilitates RWGS on dispersed Ni sites in agreement with CO2R active site studies. Finally, we construct a generalized reaction driving-force that includes temperature and potential and suggest that NiPACN could facilitate faster kinetics in CO2R relative to RWGS due to lower intrinsic barriers. This report motivates further studies that quantitatively link catalytic phenomena across disparate reaction environments.
引用
收藏
页码:17472 / 17480
页数:9
相关论文
共 53 条
[51]   Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction [J].
Yan, Chengcheng ;
Li, Haobo ;
Ye, Yifan ;
Wu, Haihua ;
Cai, Fan ;
Si, Rui ;
Xiao, Jianping ;
Miao, Shu ;
Xie, Songhai ;
Yang, Fan ;
Li, Yanshuo ;
Wang, Guoxiong ;
Bao, Xinhe .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (05) :1204-1210
[52]   Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction [J].
Yang, Hong Bin ;
Hung, Sung-Fu ;
Liu, Song ;
Yuan, Kaidi ;
Miao, Shu ;
Zhang, Liping ;
Huang, Xiang ;
Wang, Hsin-Yi ;
Cai, Weizheng ;
Chen, Rong ;
Gao, Jiajian ;
Yang, Xiaofeng ;
Chen, Wei ;
Huang, Yanqiang ;
Chen, Hao Ming ;
Li, Chang Ming ;
Zhang, Tao ;
Liu, Bin .
NATURE ENERGY, 2018, 3 (02) :140-147
[53]   Temperature Effect of CO2Reduction Electrocatalysis on Copper: Potential Dependency of Activation Energy [J].
Zong, Yixu ;
Chakthranont, Pongkarn ;
Suntivich, Jin .
JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (04)