Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO2 Conversion with Carbon-Based Materials

被引:41
作者
Koshy, David M. [1 ,2 ]
Nathan, Sindhu S. [1 ,2 ]
Asundi, Arun S. [1 ,2 ]
Abdellah, Ahmed M. [3 ]
Dull, Samuel M. [1 ]
Cullen, David A. [4 ]
Higgins, Drew [3 ]
Bao, Zhenan [1 ,2 ]
Bent, Stacey F. [1 ,2 ]
Jaramillo, Thomas F. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, 443 Via Ortega, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[3] McMaster Univ, Dept Chem Engn, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
基金
加拿大创新基金会; 美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
carbon dioxide; catalysis; electrochemistry; nitrogen-doped carbon; reverse water-gas shift; GAS SHIFT REACTION; ELECTROCHEMICAL REDUCTION; EVOLUTION; SURFACE; SITES; DIOXIDE; METHANE; DESIGN; PHASE;
D O I
10.1002/anie.202101326
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding the differences between reactions driven by elevated temperature or electric potential remains challenging, largely due to materials incompatibilities between thermal catalytic and electrocatalytic environments. We show that Ni, N-doped carbon (NiPACN), an electrocatalyst for the reduction of CO2 to CO (CO2R), can also selectively catalyze thermal CO2 to CO via the reverse water gas shift (RWGS) representing a direct analogy between catalytic phenomena across the two reaction environments. Advanced characterization techniques reveal that NiPACN likely facilitates RWGS on dispersed Ni sites in agreement with CO2R active site studies. Finally, we construct a generalized reaction driving-force that includes temperature and potential and suggest that NiPACN could facilitate faster kinetics in CO2R relative to RWGS due to lower intrinsic barriers. This report motivates further studies that quantitatively link catalytic phenomena across disparate reaction environments.
引用
收藏
页码:17472 / 17480
页数:9
相关论文
共 53 条
[41]   Molecular Nitrogen-Carbon Catalysts, Solid Metal Organic Framework Catalysts, and Solid Metal/Nitrogen-Doped Carbon (MNC) Catalysts for the Electrochemical CO2 Reduction [J].
Sofia Varela, Ana ;
Ju, Wen ;
Strasser, Peter .
ADVANCED ENERGY MATERIALS, 2018, 8 (30)
[42]   CO2 methanation: the effect of catalysts and reaction conditions [J].
Stangeland, Kristian ;
Kalai, Dori ;
Li, Hailong ;
Yu, Zhixin .
8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 :2022-2027
[43]   COMMONALITY OF SURFACE PROCESSES IN ELECTROCATALYSIS AND GAS-PHASE HETEROGENEOUS CATALYSIS [J].
STONEHART, P ;
ROSS, PN .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1975, 12 (01) :1-35
[44]  
Studt F, 2014, NAT CHEM, V6, P320, DOI [10.1038/NCHEM.1873, 10.1038/nchem.1873]
[45]   Nickel-Nitrogen-Modified Graphene: An Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide [J].
Su, Panpan ;
Iwase, Kazuyuki ;
Nakanishi, Shuji ;
Hashimoto, Kazuhito ;
Kamiya, Kazuhide .
SMALL, 2016, 12 (44) :6083-6089
[46]   Nickel-Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials [J].
Torelli, Daniel A. ;
Francis, Sonja A. ;
Crompton, J. Chance ;
Javier, Alnald ;
Thompson, Jonathan R. ;
Brunschwig, Bruce S. ;
Soriaga, Manuel P. ;
Lewis, Nathan S. .
ACS CATALYSIS, 2016, 6 (03) :2100-2104
[47]  
Wang H, 2018, ENERG ENVIRON SCI, P8
[48]   Reverse water gas shift reaction over co-precipitated Ni-CeO2 catalysts [J].
Wang Luhui ;
Zhang Shaoxing ;
Liu Yuan .
JOURNAL OF RARE EARTHS, 2008, 26 (01) :66-70
[49]   X-ray Photoelectron Spectroscopic Investigation of Plasma Enhanced Chemical Vapor Deposited NiOx, NiOx(OH)y, and CoNiOx,(OH)y: Influence of the Chemical Composition on the Catalytic Activity for the Oxygen Evolution Reaction [J].
Weidler, Natascha ;
Schuch, Jona ;
Knaus, Florian ;
Stenner, Patrick ;
Hoch, Sascha ;
Maljusch, Artjom ;
Schaefer, Rolf ;
Kaiser, Bernhard ;
Jaegermann, Wolfram .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (12) :6455-6463
[50]   Modeling gas-diffusion electrodes for CO2 reduction [J].
Weng, Lien-Chun ;
Bell, Alexis T. ;
Weber, Adam Z. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (25) :16973-16984