Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO2 Conversion with Carbon-Based Materials

被引:41
作者
Koshy, David M. [1 ,2 ]
Nathan, Sindhu S. [1 ,2 ]
Asundi, Arun S. [1 ,2 ]
Abdellah, Ahmed M. [3 ]
Dull, Samuel M. [1 ]
Cullen, David A. [4 ]
Higgins, Drew [3 ]
Bao, Zhenan [1 ,2 ]
Bent, Stacey F. [1 ,2 ]
Jaramillo, Thomas F. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, 443 Via Ortega, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[3] McMaster Univ, Dept Chem Engn, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
基金
加拿大创新基金会; 美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
carbon dioxide; catalysis; electrochemistry; nitrogen-doped carbon; reverse water-gas shift; GAS SHIFT REACTION; ELECTROCHEMICAL REDUCTION; EVOLUTION; SURFACE; SITES; DIOXIDE; METHANE; DESIGN; PHASE;
D O I
10.1002/anie.202101326
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding the differences between reactions driven by elevated temperature or electric potential remains challenging, largely due to materials incompatibilities between thermal catalytic and electrocatalytic environments. We show that Ni, N-doped carbon (NiPACN), an electrocatalyst for the reduction of CO2 to CO (CO2R), can also selectively catalyze thermal CO2 to CO via the reverse water gas shift (RWGS) representing a direct analogy between catalytic phenomena across the two reaction environments. Advanced characterization techniques reveal that NiPACN likely facilitates RWGS on dispersed Ni sites in agreement with CO2R active site studies. Finally, we construct a generalized reaction driving-force that includes temperature and potential and suggest that NiPACN could facilitate faster kinetics in CO2R relative to RWGS due to lower intrinsic barriers. This report motivates further studies that quantitatively link catalytic phenomena across disparate reaction environments.
引用
收藏
页码:17472 / 17480
页数:9
相关论文
共 53 条
[1]   The constitution of the ternary system Fe-Ni-Si [J].
Ackerbauer, Sarah ;
Krendelsberger, Nataliya ;
Weitzer, Franz ;
Hiebl, Kurt ;
Schuster, Julius C. .
INTERMETALLICS, 2009, 17 (06) :414-420
[2]   Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials [J].
Benck, Jesse D. ;
Hellstern, Thomas R. ;
Kibsgaard, Jakob ;
Chakthranont, Pongkarn ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2014, 4 (11) :3957-3971
[3]   GAS-PHASE AND ELECTROCHEMICAL OXIDATION OF CARBON-MONOXIDE ON PLATINUM, PALLADIUM AND RUTHENIUM CATALYSTS - COMPARATIVE-STUDY [J].
BLURTON, KF ;
STETTER, JR .
JOURNAL OF CATALYSIS, 1977, 46 (02) :230-233
[4]  
Burgess D.R., NIST Chemistry WebBook, NIST Standard Reference Database
[5]   Electrochemical CO2 reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products [J].
Cave, Etosha R. ;
Montoya, Joseph H. ;
Kuhl, Kendra P. ;
Abram, David N. ;
Hatsukade, Toru ;
Shi, Chuan ;
Hahn, Christopher ;
Norskov, Jens K. ;
Jaramillo, Thomas F. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (24) :15856-15863
[6]   Electric Field Effects in Electrochemical CO2 Reduction [J].
Chen, Leanne D. ;
Urushihara, Makoto ;
Chan, Karen ;
Norskov, Jens K. .
ACS CATALYSIS, 2016, 6 (10) :7133-7139
[7]   Highly Tunable and Facile Synthesis of Uniform Carbon Flower Particles [J].
Chen, Shucheng ;
Koshy, David Mathai ;
Tsao, Yuchi ;
Pfattner, Raphael ;
Yan, Xuzhou ;
Feng, Dawei ;
Bao, Zhenan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (32) :10297-10304
[8]   Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0 [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (23) :4767-4773
[9]   X-RAY SPECTROSCOPIC STUDIES OF NICKEL-COMPLEXES, WITH APPLICATION TO THE STRUCTURE OF NICKEL SITES IN HYDROGENASES [J].
COLPAS, GJ ;
MARONEY, MJ ;
BAGYINKA, C ;
KUMAR, M ;
WILLIS, WS ;
SUIB, SL ;
BAIDYA, N ;
MASCHARAK, PK .
INORGANIC CHEMISTRY, 1991, 30 (05) :920-928
[10]   A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation [J].
Dang, Shanshan ;
Yang, Haiyan ;
Gao, Peng ;
Wang, Hui ;
Li, Xiaopeng ;
Wei, Wei ;
Sun, Yuhan .
CATALYSIS TODAY, 2019, 330 :61-75