A lower bound for intuitionistic logic

被引:11
作者
Hrubes, Pavel [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague, Czech Republic
关键词
proof complexity; intuitionistic logic; modal logic;
D O I
10.1016/j.apal.2007.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an exponential lower bound on the number of proof-lines in intuitionistic propositional logic, I L, axiomatised in the usual Frege-style fashion; i.e., we give an example of I L-tautologies A(1), A(2), ... s.t. every I L-proof of A(i) must have a number of proof-lines exponential in terms of the size of Ai. We show that the results do not apply to the system of classical logic and we obtain an exponential speed-up between classical and intuitionistic logic. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 90
页数:19
相关论文
共 50 条
  • [41] A CHARACTERISATION OF OPEN BISIMILARITY USING AN INTUITIONISTIC MODAL LOGIC
    Ahn, Ki Yung
    Horne, Ross
    Tiu, Alwen
    LOGICAL METHODS IN COMPUTER SCIENCE, 2021, 17 (03)
  • [42] A bi-intuitionistic modal logic: Foundations and automation
    Stell, John G.
    Schmidt, Renate A.
    Rydeheard, David
    JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING, 2016, 85 (04) : 500 - 519
  • [43] A fragment of intuitionistic Dynamic Logic
    Celani, SA
    FUNDAMENTA INFORMATICAE, 2001, 46 (03) : 187 - 197
  • [44] Why Intuitionistic Relevant Logic Cannot Be a Core Logic
    Vidal-Rosset, Joseph
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2017, 58 (02) : 241 - 248
  • [45] A CORRECT POLYNOMIAL TRANSLATION OF S4 INTO INTUITIONISTIC LOGIC
    Gore, Rajeev
    Thomson, Jimmy
    JOURNAL OF SYMBOLIC LOGIC, 2019, 84 (02) : 439 - 451
  • [46] Intuitionistic Propositional Logic with Galois Negations
    Ma, Minghui
    Li, Guiying
    STUDIA LOGICA, 2023, 111 (01) : 21 - 56
  • [47] The Skolemization of existential quantifiers in intuitionistic logic
    Baaz, Matthias
    Iemhoff, Rosalie
    ANNALS OF PURE AND APPLIED LOGIC, 2006, 142 (1-3) : 269 - 295
  • [48] FUNCTIONAL INTERPRETATIONS OF INTUITIONISTIC LINEAR LOGIC
    Ferreira, Gilda
    Oliva, Paulo
    LOGICAL METHODS IN COMPUTER SCIENCE, 2011, 7 (01)
  • [49] Intuitionistic propositional logic with Galois connections
    Dzik, Wojciech
    Jarvinen, Jouni
    Kondo, Michiro
    LOGIC JOURNAL OF THE IGPL, 2010, 18 (06) : 837 - 858
  • [50] Classical and intuitionistic logic are asymptotically identical
    Fournier, Herve
    Gardy, Daniele
    Genitrini, Antoine
    Zaionc, Marek
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2007, 4646 : 177 - +