A lower bound for intuitionistic logic

被引:11
作者
Hrubes, Pavel [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague, Czech Republic
关键词
proof complexity; intuitionistic logic; modal logic;
D O I
10.1016/j.apal.2007.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an exponential lower bound on the number of proof-lines in intuitionistic propositional logic, I L, axiomatised in the usual Frege-style fashion; i.e., we give an example of I L-tautologies A(1), A(2), ... s.t. every I L-proof of A(i) must have a number of proof-lines exponential in terms of the size of Ai. We show that the results do not apply to the system of classical logic and we obtain an exponential speed-up between classical and intuitionistic logic. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 90
页数:19
相关论文
共 50 条
  • [31] Weakly Intuitionistic Quantum Logic
    Ronnie Hermens
    Studia Logica, 2013, 101 : 901 - 913
  • [32] The Complexity of Disjunction in Intuitionistic Logic
    Ramanujam, R.
    Sundararajan, Vaishnavi
    Suresh, S. P.
    LOGICAL FOUNDATIONS OF COMPUTER SCIENCE (LFCS 2016), 2016, 9537 : 349 - 363
  • [33] Intuitionistic logic and Muchnik degrees
    Sorbi, Andrea
    Terwijn, Sebastiaan A.
    ALGEBRA UNIVERSALIS, 2012, 67 (02) : 175 - 188
  • [34] Basic Intuitionistic Conditional Logic
    Yale Weiss
    Journal of Philosophical Logic, 2019, 48 : 447 - 469
  • [35] Quantum logic in intuitionistic perspective
    Coecke B.
    Studia Logica, 2002, 70 (3) : 411 - 440
  • [36] A probabilistic extension of intuitionistic logic
    Markovic, Z
    Ognjanovic, Z
    Raskovic, M
    MATHEMATICAL LOGIC QUARTERLY, 2003, 49 (04) : 415 - 424
  • [37] Weakly Intuitionistic Quantum Logic
    Hermens, Ronnie
    STUDIA LOGICA, 2013, 101 (05) : 901 - 913
  • [38] Symmetric Normalisation for Intuitionistic Logic
    Guenot, Nicolas
    Strassburger, Lutz
    PROCEEDINGS OF THE JOINT MEETING OF THE TWENTY-THIRD EACSL ANNUAL CONFERENCE ON COMPUTER SCIENCE LOGIC (CSL) AND THE TWENTY-NINTH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2014,
  • [39] Computation in Focused Intuitionistic Logic
    Brock-Nannestad, Taus
    Guenot, Nicolas
    Gustafsson, Daniel
    PROCEEDINGS OF THE 17TH INTERNATIONAL SYMPOSIUM ON PRINCIPLES AND PRACTICE OF DECLARATIVE PROGRAMMING (PPDP 2015), 2015, : 43 - 54
  • [40] ON COMBINING INTUITIONISTIC AND S4 MODAL LOGIC
    Rasga, Joao
    Sernadas, Cristina
    BULLETIN OF THE SECTION OF LOGIC, 2024, 53 (03): : 321 - 344