An Improved Artificial Neural Network Model for Effective Diabetes Prediction

被引:45
作者
Bukhari, Muhammad Mazhar [1 ]
Alkhamees, Bader Fahad [2 ]
Hussain, Saddam [3 ]
Gumaei, Abdu [4 ]
Assiri, Adel [5 ]
Ullah, Syed Sajid [3 ]
机构
[1] Natl Coll Business Adm & Econ, Dept Comp Sci, Lahore, Pakistan
[2] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11543, Saudi Arabia
[3] Hazara Univ, IT Dept, Mansehra 21120, KP, Pakistan
[4] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Res Chair Pervas & Mobile Comp, Riyadh 11543, Saudi Arabia
[5] King Khalid Univ, Coll Business, Management Informat Syst Dept, Abha 61421, Saudi Arabia
关键词
D O I
10.1155/2021/5525271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Data analytics, machine intelligence, and other cognitive algorithms have been employed in predicting various types of diseases in health care. The revolution of artificial neural networks (ANNs) in the medical discipline emerged for data-driven applications, particularly in the healthcare domain. It ranges from diagnosis of various diseases, medical image processing, decision support system (DSS), and disease prediction. The intention of conducting the research is to ascertain the impact of parameters on diabetes data to predict whether a particular patient has a disease or not. This paper develops an improved ANN model trained using an artificial backpropagation scaled conjugate gradient neural network (ABP-SCGNN) algorithm to predict diabetes effectively. For validating the performance of the proposed model, we conduct a large set of experiments on a Pima Indian Diabetes (PID) dataset using accuracy and mean squared error (MSE) as evaluation metrics. We use different number of neurons in the hidden layer, ranging from 5 to 50, to train the ANN models. The experimental results show that the ABP-SCGNN model, containing 20 neurons, attains 93% accuracy on the validation set, which is higher than using the other ANNs models. This result confirms the model's effectiveness and efficiency in predicting diabetes disease from the required data attributes.
引用
收藏
页数:10
相关论文
共 20 条
[1]   Exploratory Study on Direct Prediction of Diabetes Using Deep Residual Networks [J].
Abbasi-Sureshjani, Samaneh ;
Dashtbozorg, Behdad ;
Romeny, Bart M. ter Haar ;
Fleuret, Francois .
VIPIMAGE 2017, 2018, 27 :797-802
[2]   Blind Channel and Data Estimation Using Fuzzy Logic-Empowered Opposite Learning-Based Mutant Particle Swarm Optimization [J].
AsadUllah, Muhammad ;
Khan, Muhammad Adnan ;
Abbas, Sagheer ;
Athar, Atifa ;
Raza, Syed Saqib ;
Ahmad, Gulzar .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
[3]   An adaptive approach: Smart traffic congestion control system [J].
Atta, Ayesha ;
Abbas, Sagheer ;
Khan, M. Adnan ;
Ahmed, Gulzar ;
Farooq, Umer .
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2020, 32 (09) :1012-1019
[4]  
Boos C., 2012, P WORLD C MED PHYS B, P558
[5]   Maternal diabetes, programming of beta-cell disorders and intergenerational risk of type 2 diabetes [J].
Chavey, A. ;
Kioon, M. -D Ah ;
Bailbe, D. ;
Movassat, J. ;
Portha, B. .
DIABETES & METABOLISM, 2014, 40 (05) :323-330
[6]  
Choubey D.K., 2016, CLASSIFICATION OF PIMA INDIAN DIABETES DATASET USING NAIVE BAYES WITH GENETIC ALGORITHM AS AN ATTRIBUTE SELECTION, P451, DOI DOI 10.1201/9781315364094-82
[7]  
Dua D., 2019, Uci machine learning repository
[8]   TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program [J].
Florez, Jose C. ;
Jablonski, Kathleen A. ;
Bayley, Nick ;
Pollin, Toni I. ;
de Bakker, Paul I. W. ;
Shuldiner, Alan R. ;
Knowler, William C. ;
Nathan, David M. ;
Altshuler, David .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 355 (03) :241-250
[9]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[10]  
Iqbal K, 2018, INT J ADV COMPUT SC, V9, P94