Projecting the surface measure of the sphere of lnp

被引:79
作者
Naor, A
Romik, D
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2003年 / 39卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0246-0203(02)00008-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the total variation distance between the cone measure and surface measure on the sphere of l(p)(n) is bounded by a constant times 1/rootn. This is used to give a new proof of the fact that the coordinates of a random vector on the l(p)(n) sphere are approximately independent with density proportional to exp(-\t\(p)), a unification and generalization of two theorems of Diaconis and Freedman. Finally, we show in contrast that a projection of the surface measure of the l(p)(n) in sphere onto a random k-dimensional subspace is "close" to the k-dimensional Gaussian measure. (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:241 / 261
页数:21
相关论文
共 19 条
[11]  
Mattila P., 1995, Fractals and rectifiability, volume 44 of Cambridge Studies in Advanced Mathematics, V44
[12]  
MOGULSKII AA, 1991, SIBERIAN MATH J+, V32, P609
[13]  
NAOR A, CONE MEASURE SURFACE
[14]  
Rachev S.T., 1991, PROBABILITY METRICS
[15]   APPROXIMATE INDEPENDENCE OF DISTRIBUTIONS ON SPHERES AND THEIR STABILITY PROPERTIES [J].
RACHEV, ST ;
RUSCHENDORF, L .
ANNALS OF PROBABILITY, 1991, 19 (03) :1311-1337
[16]  
ROMIK D, 1999, PROJECTIONS PRODUCT
[17]  
ROMIK D, 1998, MEASURE CONCENTRATIO
[18]  
SCHECHTMAN G, 1989, LECT NOTES MATH, V1376, P274
[19]   ON THE VOLUME OF THE INTERSECTION OF 2 L-P(N) BALLS [J].
SCHECHTMAN, G ;
ZINN, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (01) :217-224