Projecting the surface measure of the sphere of lnp

被引:79
作者
Naor, A
Romik, D
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2003年 / 39卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0246-0203(02)00008-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the total variation distance between the cone measure and surface measure on the sphere of l(p)(n) is bounded by a constant times 1/rootn. This is used to give a new proof of the fact that the coordinates of a random vector on the l(p)(n) sphere are approximately independent with density proportional to exp(-\t\(p)), a unification and generalization of two theorems of Diaconis and Freedman. Finally, we show in contrast that a projection of the surface measure of the l(p)(n) in sphere onto a random k-dimensional subspace is "close" to the k-dimensional Gaussian measure. (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:241 / 261
页数:21
相关论文
共 19 条
[1]  
[Anonymous], 1986, ASYMPTOTIC THEORY FI
[2]  
[Anonymous], 2000, BEITRAGE ALGEBRA GEO
[3]  
ANTILLA M, IN PRESS T AM MATH S
[4]  
Artin E., 1964, GAMMA FUNCTION
[5]   The subindependence of coordinate slabs in lpn balls [J].
Ball, K ;
Perissinaki, I .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 107 (1) :289-299
[6]  
BARTHE F, NOTE SIMULTANEOUS PO
[7]   ON THE CONVERGENCE OF PROJECTIONS OF UNIFORM DISTRIBUTIONS ON BALLS [J].
BOROVKOV, KA .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1990, 35 (03) :546-550
[8]  
DIACONIS P, 1987, ANN I H POINCARE-PR, V23, P397
[9]  
GORDON Y, 1988, SPRINGER LECT NOTES, V1317, P84
[10]  
KOLDOBSKY A, 2000, LECT NOTES MATH, V1745, P119