Genetic mapping of the early responses to salt stress in Arabidopsis thaliana

被引:18
|
作者
Awlia, Mariam [1 ]
Alshareef, Nouf [1 ,2 ]
Saber, Noha [1 ]
Korte, Arthur [3 ]
Oakey, Helena [4 ]
Panzarova, Klara [5 ]
Trtilek, Martin [5 ]
Negrao, Sonia [1 ,6 ]
Tester, Mark [1 ]
Julkowska, Magdalena M. [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Div Biol & Environm Sci & Engn BESE, Thuwal 239556900, Saudi Arabia
[2] King Abdulaziz Univ KAU, Dept Biochem, Fac Sci, Jeddah, Saudi Arabia
[3] Univ Wurzburg, Ctr Computat & Theoret Biol, Wurzburg, Germany
[4] Univ Adelaide, Sch Agr Food & Wine, Fac Sci, Adelaide, SA 5005, Australia
[5] Photon Syst Instruments PSI, Drasov, Czech Republic
[6] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin, Ireland
来源
PLANT JOURNAL | 2021年 / 107卷 / 02期
关键词
Arabidopsis; salt stress; high-throughput phenotyping; multivariate analysis; genome-wide association studies; SALINITY TOLERANCE; CO2; ASSIMILATION; WHEAT CULTIVARS; PHOTOSYSTEM-II; SOIL-SALINITY; GROWTH; ROOT; COMPONENTS; TRAITS; PHOTOINHIBITION;
D O I
10.1111/tpj.15310
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salt stress decreases plant growth prior to significant ion accumulation in the shoot. However, the processes underlying this rapid reduction in growth are still unknown. To understand the changes in salt stress responses through time and at multiple physiological levels, examining different plant processes within a single set-up is required. Recent advances in phenotyping has allowed the image-based estimation of plant growth, morphology, colour and photosynthetic activity. In this study, we examined the salt stress-induced responses of 191 Arabidopsis accessions from 1 h to 7 days after treatment using high-throughput phenotyping. Multivariate analyses and machine learning algorithms identified that quantum yield measured in the light-adapted state (F-v'/F-m') greatly affected growth maintenance in the early phase of salt stress, whereas the maximum quantum yield (QY(max)) was crucial at a later stage. In addition, our genome-wide association study (GWAS) identified 770 loci that were specific to salt stress, in which two loci associated with QY(max) and F-v'/F-m' were selected for validation using T-DNA insertion lines. We characterized an unknown protein kinase found in the QY(max) locus that reduced photosynthetic efficiency and growth maintenance under salt stress. Understanding the molecular context of the candidate genes identified will provide valuable insights into the early plant responses to salt stress. Furthermore, our work incorporates high-throughput phenotyping, multivariate analyses and GWAS, uncovering details of temporal stress responses and identifying associations across different traits and time points, which are likely to constitute the genetic components of salinity tolerance.
引用
收藏
页码:544 / 563
页数:20
相关论文
共 50 条
  • [21] The roles of autophagy in development and stress responses in Arabidopsis thaliana
    Lv, Xin
    Pu, Xiaojun
    Qin, Gongwei
    Zhu, Tong
    Lin, Honghui
    APOPTOSIS, 2014, 19 (06) : 905 - 921
  • [22] Transcriptional responses of Arabidopsis thaliana plants to As (V) stress
    Jason M Abercrombie
    Matthew D Halfhill
    Priya Ranjan
    Murali R Rao
    Arnold M Saxton
    Joshua S Yuan
    C Neal Stewart
    BMC Plant Biology, 8
  • [23] Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana
    Quesada, V
    Ponce, MR
    Micol, JL
    GENETICS, 2000, 154 (01) : 421 - 436
  • [24] Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana
    Kumari, Manjeet
    Taylor, Gregory J.
    Deyholos, Michael K.
    MOLECULAR GENETICS AND GENOMICS, 2008, 279 (04) : 339 - 357
  • [25] Transcriptional responses of Arabidopsis thaliana plants to As (V) stress
    Abercrombie, Jason M.
    Halfhill, Matthew D.
    Ranjan, Priya
    Rao, Murali R.
    Saxton, Arnold M.
    Yuan, Joshua S.
    Stewart, C. Neal, Jr.
    BMC PLANT BIOLOGY, 2008, 8 (1)
  • [26] Early responses of Arabidopsis thaliana to infection by Verticillium longisporum
    Tischner, Rudolf
    Koltermann, Michael
    Hesse, Holger
    Plath, Magda
    PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 2010, 74 (5-6) : 419 - 427
  • [27] Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers
    Tassoni, Annalisa
    Franceschetti, Marina
    Bagni, Nello
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2008, 46 (5-6) : 607 - 613
  • [28] The effect of salt stress on Arabidopsis thaliana and Phelipanche ramosa interaction
    Demirbas, S.
    Vlachonasios, K. E.
    Acar, O.
    Kaldis, A.
    WEED RESEARCH, 2013, 53 (06) : 452 - 460
  • [29] Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress
    Arbona, Vicent
    Argamasilla, Rosa
    Gomez-Cadenas, Aurelio
    JOURNAL OF PLANT PHYSIOLOGY, 2010, 167 (16) : 1342 - 1350
  • [30] Genetic Mapping of Genotype-by-Ploidy Effects in Arabidopsis thaliana
    Wijnen, Cris L.
    Becker, Frank F. M.
    Okkersen, Andries A.
    de Snoo, C. Bastiaan
    Boer, Martin P.
    van Eeuwijk, Fred A.
    Wijnker, Erik
    Keurentjes, Joost J. B.
    GENES, 2023, 14 (06)