Genetic mapping of the early responses to salt stress in Arabidopsis thaliana

被引:19
|
作者
Awlia, Mariam [1 ]
Alshareef, Nouf [1 ,2 ]
Saber, Noha [1 ]
Korte, Arthur [3 ]
Oakey, Helena [4 ]
Panzarova, Klara [5 ]
Trtilek, Martin [5 ]
Negrao, Sonia [1 ,6 ]
Tester, Mark [1 ]
Julkowska, Magdalena M. [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Div Biol & Environm Sci & Engn BESE, Thuwal 239556900, Saudi Arabia
[2] King Abdulaziz Univ KAU, Dept Biochem, Fac Sci, Jeddah, Saudi Arabia
[3] Univ Wurzburg, Ctr Computat & Theoret Biol, Wurzburg, Germany
[4] Univ Adelaide, Sch Agr Food & Wine, Fac Sci, Adelaide, SA 5005, Australia
[5] Photon Syst Instruments PSI, Drasov, Czech Republic
[6] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin, Ireland
关键词
Arabidopsis; salt stress; high-throughput phenotyping; multivariate analysis; genome-wide association studies; SALINITY TOLERANCE; CO2; ASSIMILATION; WHEAT CULTIVARS; PHOTOSYSTEM-II; SOIL-SALINITY; GROWTH; ROOT; COMPONENTS; TRAITS; PHOTOINHIBITION;
D O I
10.1111/tpj.15310
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salt stress decreases plant growth prior to significant ion accumulation in the shoot. However, the processes underlying this rapid reduction in growth are still unknown. To understand the changes in salt stress responses through time and at multiple physiological levels, examining different plant processes within a single set-up is required. Recent advances in phenotyping has allowed the image-based estimation of plant growth, morphology, colour and photosynthetic activity. In this study, we examined the salt stress-induced responses of 191 Arabidopsis accessions from 1 h to 7 days after treatment using high-throughput phenotyping. Multivariate analyses and machine learning algorithms identified that quantum yield measured in the light-adapted state (F-v'/F-m') greatly affected growth maintenance in the early phase of salt stress, whereas the maximum quantum yield (QY(max)) was crucial at a later stage. In addition, our genome-wide association study (GWAS) identified 770 loci that were specific to salt stress, in which two loci associated with QY(max) and F-v'/F-m' were selected for validation using T-DNA insertion lines. We characterized an unknown protein kinase found in the QY(max) locus that reduced photosynthetic efficiency and growth maintenance under salt stress. Understanding the molecular context of the candidate genes identified will provide valuable insights into the early plant responses to salt stress. Furthermore, our work incorporates high-throughput phenotyping, multivariate analyses and GWAS, uncovering details of temporal stress responses and identifying associations across different traits and time points, which are likely to constitute the genetic components of salinity tolerance.
引用
收藏
页码:544 / 563
页数:20
相关论文
共 50 条
  • [1] Microarray analysis of transcriptional responses to salt and drought stress in Arabidopsis thaliana
    Ghorbani, Razieh
    Alemzadeh, Abbas
    Razi, Hooman
    HELIYON, 2019, 5 (11)
  • [2] Phenotypic and Methylome Responses to Salt Stress in Arabidopsis thaliana Natural Accessions
    Lin, Xiaohe
    Zhou, Ming
    Yao, Jing
    Li, Qingshun Q.
    Zhang, Yuan-Ye
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [3] Cryptic Genetic Variation for Arabidopsis thaliana Seed Germination Speed in a Novel Salt Stress Environment
    Yuan, Wei
    Flowers, Jonathan M.
    Sahraie, Dustin J.
    Purugganan, Michael D.
    G3-GENES GENOMES GENETICS, 2016, 6 (10): : 3129 - 3138
  • [4] Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana
    Liu, Yujia
    Ji, Xiaoyu
    Zheng, Lei
    Nie, Xianguang
    Wang, Yucheng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (05) : 9979 - 9998
  • [5] The roles of autophagy in development and stress responses in Arabidopsis thaliana
    Lv, Xin
    Pu, Xiaojun
    Qin, Gongwei
    Zhu, Tong
    Lin, Honghui
    APOPTOSIS, 2014, 19 (06) : 905 - 921
  • [6] Genetic Loci Associated with Early Salt Stress Responses of Roots
    Deolu-Ajayi, Ayodeji O.
    Meyer, A. Jessica
    Haring, Michel A.
    Julkowska, Magdalena M.
    Testerink, Christa
    ISCIENCE, 2019, 21 : 458 - +
  • [7] Early responses to salt stress in quinoa genotypes with opposite behavior
    Vita, Federico
    Ghignone, Stefano
    Bazihizina, Nadia
    Rasouli, Fatemeh
    Sabbatini, Leonardo
    Kiani-Pouya, Ali
    Kiferle, Claudia
    Shabala, Sergey
    Balestrini, Raffaella
    Mancuso, Stefano
    PHYSIOLOGIA PLANTARUM, 2021, 173 (04) : 1392 - 1420
  • [8] Transcriptomic analysis of salt stress induced chlorophyll biosynthesis-related genes in photoheterotrophic Arabidopsis thaliana calli
    Celik, Haluk
    Arikan, Burcu
    Kara, Neslihan Turgut
    Ucarli, Cuneyt
    Cakir, Ozgur
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2023, 23 (02)
  • [9] OsBTBZ1 Confers Salt Stress Tolerance in Arabidopsis thaliana
    Saputro, Triono B.
    Jakada, Bello H.
    Chutimanukul, Panita
    Comai, Luca
    Buaboocha, Teerapong
    Chadchawan, Supachitra
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [10] Exploring Natural Variations in Arabidopsis thaliana: Plant Adaptability to Salt Stress
    Lombardi, Marco
    Bellucci, Manuel
    Cimini, Sara
    Locato, Vittoria
    Loreto, Francesco
    De Gara, Laura
    PLANTS-BASEL, 2024, 13 (08):