Nonlinear quantum theory of interaction of charged particles and monochromatic radiation in a medium

被引:4
|
作者
Avetisyan, GK [1 ]
Bagdasaryan, AK [1 ]
Mkrtchyan, GF [1 ]
机构
[1] Yerevan State Univ, Yerevan 375049, Armenia
关键词
Transverse Wave; Charged Particle; Quantum Theory; Phase Velocity; Electromagnetic Radiation;
D O I
10.1134/1.558466
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the quantum theory of nonlinear interaction of charged particles and a given field of plane-transverse electromagnetic radiation in a medium. Using the exact solution of the generalized Lame equation, we find the nonlinear solution of the Mathieu equation to which the relativistic quantum equation of particle motion in the field of a monochromatic wave in the medium reduces if one ignores the spin-spin interaction (the Klein-Gordon equation). We study the stability of solutions of the generalized Lame equation and find a class of bounded solutions corresponding to the wave function of the particle. On the basis of this solution we establish that the particle states in a stimulated Cherenkov process form bands. Depending on the wave intensity and polarization, such a band structure describes both bound particle-wave states (capture) and states in the continuous spectrum. It is obvious that in a plasma there can be no such bands, since bound states of a particle with a transverse wave whose phase velocity upsilon(ph) is higher than c are impossible in this case. The method developed in the paper can be applied to a broad class of problems reducible to the solution of the Mathieu equation. (C) 1998 American Institute of Physics.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 50 条