A Fourth Order Accurate Difference Method for Solving the Second Order Elliptic Equation with Integral Boundary Condition

被引:0
作者
Reis, Rifat [1 ]
Dosiyev, Adiguzel A. [1 ]
机构
[1] Near East Univ, Dept Math, Mersin 10, Nicosia, Trnc, Turkey
来源
INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020) | 2021年 / 2325卷
关键词
D O I
10.1063/5.0040375
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A uniform estimation of order O(h(4)), for the convergence of the finite difference solution for the general second order elliptic equation with nonlocal integral boundary condition is obtained where h is the mesh step.
引用
收藏
页数:5
相关论文
共 6 条
[1]  
DENNIS SCR, 1979, J I MATH APPL, V23, P43
[2]   A fourth-order accurate difference Dirichlet problem for the approximate solution of Laplace's equation with integral boundary condition [J].
Dosiyev, Adiguzel ;
Reis, Rifat .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
[3]   Difference method of fourth order accuracy for the Laplace equation with multilevel nonlocal conditions [J].
Dosiyev, Adiguzel A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 354 (587-596) :587-596
[4]  
Gupta M. M., 1983, SCI COMPUTING, P147
[5]  
Hudson J. D, 1980, J I MATH APPL, V26, P369
[6]   On the Numerical Solution of a Multilevel Nonlocal Problem [J].
Volkov, E. A. ;
Dosiyev, A. A. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) :3589-3604