Approximation of stochastic advection-diffusion equation using compact finite difference technique

被引:0
|
作者
Bishehniasar, M. [1 ]
Soheili, A. R. [2 ]
机构
[1] Univ Sistan & Baluchestan Zahedan, Dept Math, Sistan Va Baluchestan, Iran
[2] Ferdowsi Univ Mashhad, Sch Math Sci, Dept Appl Math, Ctr Excellence Modeling & Control Syst, Mashhad, Iran
关键词
Stochastic partial differential equation; compact finite difference scheme; stability; semi-implicit; Milstein method; STABILITY; SCHEMES; DRIVEN; NOISE;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a new method for solving the stochastic advection-diffusion equation of Ito type. In this work, we use a compact finite difference approximation for discretizing spatial derivatives of the mentioned equation and semi-implicit Milstein scheme for the resulting linear stochastic system of differential equation. The main purpose of this paper is the stability investigation of the applied method. finally, some numerical examples are provided to show the accuracy and efficiency of the proposed technique.
引用
收藏
页码:327 / 333
页数:7
相关论文
共 50 条
  • [1] Finite Difference and Spline Approximation for Solving Fractional Stochastic Advection-Diffusion Equation
    Farshid Mirzaee
    Khosro Sayevand
    Shadi Rezaei
    Nasrin Samadyar
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 607 - 617
  • [2] Finite Difference and Spline Approximation for Solving Fractional Stochastic Advection-Diffusion Equation
    Mirzaee, Farshid
    Sayevand, Khosro
    Rezaei, Shadi
    Samadyar, Nasrin
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (02): : 607 - 617
  • [3] Compact finite difference method to numerically solving a stochastic fractional advection-diffusion equation
    Sweilam, N. H.
    El-Sakout, D. M.
    Muttardi, M. M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [4] Compact finite difference method to numerically solving a stochastic fractional advection-diffusion equation
    N. H. Sweilam
    D. M. El-Sakout
    M. M. Muttardi
    Advances in Difference Equations, 2020
  • [5] Unconditional stable explicit finite difference technique for the advection-diffusion equation using spreadsheets
    Karahan, Halil
    ADVANCES IN ENGINEERING SOFTWARE, 2007, 38 (02) : 80 - 86
  • [6] FINITE-DIFFERENCE APPROXIMATIONS TO THE ADVECTION-DIFFUSION EQUATION
    WRIGHT, DG
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1992, 44A (03) : 261 - 269
  • [7] Finite difference approximations for the fractional advection-diffusion equation
    Su, Lijuan
    Wang, Wenqia
    Yang, Zhaoxia
    PHYSICS LETTERS A, 2009, 373 (48) : 4405 - 4408
  • [8] Implicit finite difference techniques for the advection-diffusion equation using spreadsheets
    Karahan, Halil
    ADVANCES IN ENGINEERING SOFTWARE, 2006, 37 (09) : 601 - 608
  • [9] Numerical Solution of Advection-Diffusion Equation Using a Sixth-Order Compact Finite Difference Method
    Gurarslan, Gurhan
    Karahan, Halil
    Alkaya, Devrim
    Sari, Murat
    Yasar, Mutlu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [10] WEIGHTED-MEAN SCHEMES FOR FINITE-DIFFERENCE APPROXIMATION TO ADVECTION-DIFFUSION EQUATION
    FIADEIRO, ME
    VERONIS, G
    TELLUS, 1977, 29 (06): : 512 - 522