Well-posedness for a scalar conservation law with singular nonconservative source

被引:10
|
作者
Guerra, G [1 ]
机构
[1] Univ Milan, Dipartimento Matemat & Applicaz, I-80126 Milan, Italy
关键词
well posedness; balance laws; singular sources; nonconservative (NC) products;
D O I
10.1016/j.jde.2004.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the 2 x 2 strictly hyperbolic system [GRAPHICS] For possibly large, discontinuous data, the continuous dependence of the solution with respect to both a(0) and u(0) is shown. Moreover, the solutions are characterized as unique limits of Kruzkov's entropic solutions constructed with regularized initial data a(0)(epsilon). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:438 / 469
页数:32
相关论文
共 50 条
  • [21] On the theoretical foundation of overset grid methods for hyperbolic problems: Well-posedness and conservation
    Kopriva, David A.
    Nordstrom, Jan
    Gassner, Gregor J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 448
  • [22] A note on well-posedness of source identification elliptic problem in a Banach space
    Ashyralyev, A.
    Ashyralyyev, C.
    Zvyagin, V. G.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 99 (03): : 96 - 104
  • [23] Energy conservation and well-posedness of the Camassa-Holm equation in Sobolev spaces
    Guo, Yingying
    Ye, Weikui
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [24] A note on well-posedness of semilinear reaction-diffusion problem with singular initial data
    Robinson, James C.
    Sierzega, Mikolaj
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 105 - 110
  • [25] Well-posedness in the generalized sense for variational inclusion and disclusion problems and well-posedness for optimization problems with constraint
    Lin, Lai-Jiu
    Chuang, Chih-Sheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) : 3609 - 3617
  • [26] ON SOLVABILITY AND WELL-POSEDNESS OF TWO-POINT WEIGHTED SINGULAR BOUNDARY VALUE PROBLEMS
    Partsvania, Nino
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2011, 54 : 139 - 146
  • [27] WELL-POSEDNESS OF A PARABOLIC INVERSE PROBLEM
    喻文焕
    Acta Mathematicae Applicatae Sinica, 1997, (03) : 329 - 336
  • [28] Well-posedness for Hall-magnetohydrodynamics
    Chae, Dongho
    Degond, Pierre
    Liu, Jian-Guo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03): : 555 - 565
  • [29] Well-posedness for vector equilibrium problems
    Bianchi, M.
    Kassay, G.
    Pini, R.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2009, 70 (01) : 171 - 182
  • [30] Well-posedness of fractional parabolic equations
    Ashyralyev, Allaberen
    BOUNDARY VALUE PROBLEMS, 2013, : 1 - 18