Well-posedness for a scalar conservation law with singular nonconservative source

被引:10
作者
Guerra, G [1 ]
机构
[1] Univ Milan, Dipartimento Matemat & Applicaz, I-80126 Milan, Italy
关键词
well posedness; balance laws; singular sources; nonconservative (NC) products;
D O I
10.1016/j.jde.2004.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the 2 x 2 strictly hyperbolic system [GRAPHICS] For possibly large, discontinuous data, the continuous dependence of the solution with respect to both a(0) and u(0) is shown. Moreover, the solutions are characterized as unique limits of Kruzkov's entropic solutions constructed with regularized initial data a(0)(epsilon). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:438 / 469
页数:32
相关论文
共 26 条
[1]   Godunov-type approximation for a general resonant balance law with large data [J].
Amadori, D ;
Gosse, L ;
Guerra, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (02) :233-274
[2]   Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws [J].
Amadori, D ;
Gosse, L ;
Guerra, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 162 (04) :327-366
[3]   Well-posedness for a class of 2 x 2 conservation laws with L-infinity data [J].
Baiti, P ;
Jenssen, HK .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 140 (01) :161-185
[4]  
Baiti P., 1997, Differential Integral Equations, V10, P401
[5]   Stability of L∞ solutions for hyperbolic systems with coinciding shocks and rarefactions [J].
Bianchini, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (04) :959-981
[6]  
Bianchini S., 2000, Differential Integral Equations, V13, P1529
[7]  
Botchorishvili R, 2003, MATH COMPUT, V72, P131, DOI 10.1090/S0025-5718-01-01371-0
[8]   L1 stability estimates for n x n conservation laws [J].
Bressan, A ;
Liu, TP ;
Yang, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 149 (01) :1-22
[9]  
BRESSAN A, 2000, OXFORD LEXTURE SERIE, V20
[10]  
Bressan A., 2000, Diff. Integ. Equat., V13, P1503